Доклад Игоря Зайцева «Классические и интуиционистские кондициональные логики: метатеория, семантика, теория доказательств»
Стажер-исследователь Игорь Зайцев выступил с докладом «Классические и интуиционистские кондициональные логики: метатеория, семантика, теория доказательств» на научно-исследовательском семинаре «From the Logical Point of View».

Аннотация
Цель двух докладов — представить систематический обзор классических и интуиционистских подходов к построению кондициональной (условной) логики, а также обсудить результаты, полученные в этой области.
В первой части будет дано введение в кондициональную логику как формальный аппарат для анализа рассуждений, использующих как индикативные, так и контрфактические условные выражения. Мы обсудим мотивацию введения кондициональных операторов и отличие их от условных выражений, формализуемых в других неклассических логиках. Будут рассмотрены ключевые системы, предложенные в работах Р. Сталнакера [8], Д. Льюиса [3, 4], Б. Челласа [1] и Д. Ньюта [5], их аксиоматические исчисления, различные типы семантик: семантика сфер, (обобщенная) реляционная семантика, семантика сравнительной возможности и селективно-функциональная семантика [5, 7, 9], — а также доказательства ряда метатеорем.
Во второй части акцент будет сделан на интуиционистских и конструктивных вариантах систем кондициональной логики, развивающихся в последние годы. Будут рассмотрены мотивации отказа от классических презумпций и постановка задачи о формализации контрфактических рассуждений в рамках конструктивного контекста. Подробно будут проанализированы работы Й. Вайса [11, 12], И. Чиарделли, С. Лью [2] и Г.К. Ольховикова [6], посвящённые как семантическим моделям (в частности, модифицированным реляционным семантикам — биреляционным моделям), так и системам аксиоматических исчислений для указанного типа логик. Отдельно будут проанализированы особенности конструктивных кондициональных логик, развиваемых над логикой N4 Д. Нельсона [10] и логикой C, разработанной Х. Вансингом.
Заключительная часть выступлений посвящена собственным результатам автора, включающим построение аксиоматических и субординатных натуральных исчислений для интуиционистских аналогов систем Сталнакера–Льюиса, конструктивной кондициональной коннексивной логики CCCL Вансинга-Унтерхубера [10] с аксимой сериальности, а также введение новых ограничений на кондициональное отношение достижимости в контексте кондициональных биреляционных шкал реляционной семантики. Эти результаты открывают перспективу дальнейшего развития интуиционистской (шире — конструктивной) кондициональной логики.
Литература:
[1] Chellas B.F. Basic Conditional Logic // Journal of Philosophical Logic. 1975. Vol. 5. No. 2. P. 133–153.
[2] Ciardelli I., Liu X. Intuitionistic Conditional Logics // Journal of Philosophical Logic. 2020. Vol. 49. No. 4. P. 807–832.
[3] Lewis D. Counterfactuals and Comparative Possibility // Journal of Philosophical Logic. 1973. Vol. 2. No. 4. P. 418–446.
[4] Lewis D. Counterfactuals. Oxford: Blackwell Publishing, 1973.
[5] Nute D., Cross C.B. Conditional Logic // Handbook of Philosophical Logic. Vol. 4. 2nd Edn. / Ed. by D.M. Gabbay, F. Guenthner. Dordrecht: Springer, 2002. P. 1–98.
[6] Olkhovikov G.K. An Intuitionistically Complete System of Basic Intuitionistic Conditional Logic // Journal of Philosophical Logic. 2024. Vol. 53. No. 5. P. 1199–1240.
[7] Segerberg K. Notes on Conditional Logic // Studia Logica. 1989. Vol. 48. No. 2. P. 157–168.
[8] Stalnaker R.C., Thomason R.H. A Semantic Analysis of Conditional Logic // Theoria. 1970. Vol. 36. No. 1. P. 23–42.
[9] Unterhuber M. Possible Worlds Semantics for Indicative and Counterfactual Conditionals? A Formal-Philosophical Inquiry into Chellas-Segerberg Semantics. Frankfurt: Ontos Verlag, 2013.
[10] Wansing H., Unterhuber M. Connexive Conditional Logic. Part 1 // Logic and Logical Philosophy. 2019. Vol. 28. P. 567– 610.
[11] Weiss Y. Basic Intuitionistic Conditional Logic // Journal of Philosophical Logic. 2018. Vol. 48. No. 3. P. 447–469.
[12] Weiss Y. Frontiers of Conditional Logic. PhD Thesis. New York: The City University of New York, 2019.
