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Abstract Theory of mind refers to the human capacity for reasoning about others’
mental states based on observations of their actions and unfolding events. This type of
reasoning is notorious in the cognitive science literature for its presumedcomputational
intractability.Apossible reason could be that itmay involve higher-order thinking (e.g.,
‘you believe that I believe that you believe’). To investigate this we formalize theory
of mind reasoning as updating of beliefs about beliefs using dynamic epistemic logic,
as this formalism allows to parameterize ‘order of thinking.’ We prove that theory of
mind reasoning, so formalized, indeed is intractable (specifically, PSPACE-complete).
Using parameterized complexity we prove, however, that the ‘order parameter’ is not
a source of intractability. We furthermore consider a set of alternative parameters and
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investigate which of them are sources of intractability. We discuss the implications of
these results for the understanding of theory of mind.

Keywords Theory of mind · Higher-order reasoning · Computational-level analysis ·
Dynamic epistemic logic · Parameterized complexity · Intractability

1 Introduction

Imagine you are in love. You find yourself at your desk and you cannot stop your mind
from wandering off. What is she thinking about right now? And more importantly, is
she thinking about you, and does she know that you are thinking about her? You look
at your phone, no message yet. Does this mean she is not interested, or is she waiting
for you to send a message first? This kind of reasoning is an example of the cognitive
capacity called ‘theory of mind,’1 which is the capacity for attributing mental states
to oneself and others and to reason about these to explain behavior. This capacity is
widely studied in various fields such as psychology, philosophy, biology, and cognitive
(neuro)science (see, e.g., Frith 2001; Nichols and Stich 2003; Premack and Woodruff
1978; Verbrugge 2009; Wellman et al. 2001). What is especially interesting about the
study of theory of mind is that researchers are puzzled by the heavy computational
load that the use of theory of mind seems to imply (cf. Apperly 2011; Carruthers 2006;
Haselager 1997; Levinson 2006; Sperber and Wilson 1996; Zawidzki 2013). Theory
of mind seems to be so computationally demanding that successfully engaging in it
seems impossible for resource-boundedminds like our own. As IanApperly describes:

[T]he problem is that an agent may have any number of beliefs (and other mental
states), any of which might be relevant when trying to judge what the agent will
think or do in a given situation. […] [W]e should be extremely worried by the
potentially intractable computational problems posed by mindreading. (Apperly
2011, p. 9, p. 179)

Although there is wide agreement that theory of mind poses a computationally
intractable problem, precisely which aspects of theory of mind are sources of this
intractability is highly debated (cf. Apperly 2011; Carruthers 2006; Haselager 1997;
Levinson 2006; Slors 2012; Zawidzki 2013). One aspect that is recognized in the
literature as potentially aggravating the computational load of theory ofmind, is the use
of higher-order thinking, such as the attribution of beliefs about beliefs. For instance,
second-order belief attribution (such as, ‘Ayla thinks that Murat believes in unicorns’)
already seems to bemore difficult than first-order belief attribution (Flobbe et al. 2008;
Hedden and Zhang 2002; Miller 2009; Wellman et al. 2001). Furthermore, several
studies that investigated perspective taking at even higher levels found a prominent
drop in performance from the fourth level (Kinderman et al. 1998; Lyons et al. 2010;

1 Anote about terminology—throughout this paperwewill use the term ‘theory ofmind.’ In some literature,
instead of theory of mind, the term mindreading is used to refer to the same cognitive capacity. Note that
theory of mind is not actually a ‘theory’ but refers to a cognitive capacity. To emphasize the fact that theory
of mind is a capacity rather than a theory, we will also refer to it as ‘theory of mind reasoning,’ or as the
‘theory of mind capacity.’
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Stiller and Dunbar 2007; but see also O’Grady et al. 2015). However, since most
accounts of theory of mind—and the claims about their supposed (in)tractability—are
expressed at an informal level, it is unclear whether this ‘order parameter’ is indeed a
source of intractability andwhether restricting it could render theory ofmind tractable.

To investigate this we formalize theory of mind reasoning as updating of beliefs
about beliefs using dynamic epistemic logic, as this formalism allows to parameterize
the order of higher-order belief attribution. We prove that theory of mind reasoning,
so formalized, indeed is intractable (specifically, PSPACE-complete). Using param-
eterized complexity we prove that, contrary to common belief, the order parameter
(formalized as the modal depth of epistemic formulas) is not a source of intractability.
We furthermore consider a set of alternative parameters and investigate which of them
are sources of intractability. We thereby also provide a technical contribution with
respect to dynamic epistemic logic (DEL)—we present fixed-parameter intractabil-
ity and tractability results for the model checking problem for DEL (see Table 1 and
Fig. 24 for an overview of the results). To our knowledge, this is the first parameterized
complexity analysis for problems related to dynamic epistemic logic.

This work is meant as a showcase for how logic and complexity theory can be used
to address questions in cognitive science (see also Cherniak 1990; Frixione 2001; Isaac
et al. 2014; Levesque 1988). We address both cognitive scientists and logicians who
are interested in theory of mind reasoning and its supposed intractability. We present
this work as an example to logicians of how they can contribute to cognitive science,
and an illustration to cognitive scientists of how these kinds of analyses can address
questions about what makes theory of mind intractable or not. To this end, we include
a primer on the conceptual background of computational-level modeling (Marr 1982),
and the methodology of using complexity theory in cognitive science. Readers that
are mainly interested in the implications of our results for the understanding of theory
of mind may choose to skip the details of the complexity-theoretic results as these are
not essential to understand the argument that we present. Furthermore, our complexity
results may be of independent interest to researchers interested in the (parameterized)
complexity of DEL model checking.

The paper is structured as follows. First, in Sect. 2, we introduce the framework of
modeling cognitive capacities at Marr’s computational level and how and why to for-
malize the notion of complexity of theories of cognition. Then, in Sect. 3, we discuss
the preliminaries of dynamic epistemic logic and introduce our formalism of updating
of beliefs about beliefs as a form of model checking for dynamic epistemic logic.
In Sect. 4, we discuss the preliminaries of (parameterized) complexity theory, and
we analyze the classical and parameterized computational complexity of our formal-
ization. In Sect. 5 we discuss the implications of these results for the understanding
of theory of mind. Finally, in Sect. 6, we conclude and suggest directions for future
research.

2 Conceptual and Methodological Background

In this section, we explain the conceptual and methodological foundations of the
approach that we use to analyze the computational complexity of theory of mind and
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its purported sources of intractability. This approach has been proposed, among others,
by van Rooij and colleagues (van Rooij 2008; van Rooij and Wareham 2008, 2012)
and builds on a combination of computational-level modeling on the one hand, and
the use of concepts and proof techniques from classical and parameterized complexity
theory on the other hand.

2.1 Modeling at the Computational Level

To make formal claims about the complexity of theory of mind, we first need to define
a model that captures theory of mind, or at least captures a necessary sub-capacity
of theory of mind. This model should be a general model of the capacity, as opposed
to a task-specific model of theory of mind in which not the capacity as such, but the
application of it in a specific task is modeled. If we were to limit ourselves to a task-
specific model, our results would hold for a specific instance of theory of mind but
not necessarily generalise to other instances of theory of mind and therefore say little
about the computational complexity of the general capacity.

There are several task-specific models of instances of theory of mind—both prob-
abilistic and logic-based—mainly focussed on false-belief tasks. Braüner (2014),
Bolander (2014), Stenning and van Lambalgen (2008), and Arkoudas and Bringsjord
(2009) have presented different formalizations of several false-belief tasks, using
respectively hybrid logic, dynamic epistemic logic, the event calculus, and closed-
world reasoning. Arslan et al. (2013) defined an ACT-R model for the first and
second-order false-belief task. Baker (2012) presented a Bayesian model for several
alternative theory of mind tasks.

Blokpoel et al. (2013) and van Rooij et al. (2011) also proposed generic models
of aspects of theory of mind, such as goal inference and recipient design, but these
did not explicitly model the attribution of beliefs and beliefs about beliefs. Since our
goal here is to specifically investigate the (parameterized) complexity of higher-order
theory of mind we will propose a generic model based on dynamic epistemic logic.
This formalism allows us to parameterize ‘order of thinking’ in a flexible way; i.e.,
there is no need to hard-code an upper limit on the order.

Besides the distinction between a generic and a task-specific model of a cognitive
capacity, there are different levels of description at which a model can be pitched.
The model that we put forth in this paper is situated at what Marr (1982) called
the computational level. This is a description of a capacity in terms of what (kind
of) problem needs to be solved, defined by a collection of constraints that need to be
satisfied. This kind of description can be specified in terms of an input-outputmapping,
i.e., as a computational problem.

In addition, Marr defined two other levels of description, namely the algorithmic
level and the implementational level. An algorithmic-level description defines the
algorithm that is used to solve a problem, and it specifies the representations that
the algorithm operates on. For a given computational-level description of a capacity,
there can be many different algorithmic-level descriptions compatible with it, i.e., that
compute the problem defined at the computional level. Lastly, an implementational-
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level description defines how an algorithm is implemented physically. Again it holds
that the same algorithm can be implemented by different physical realizations.

When we present our results about the complexity of our formal description of
theory of mind, we want our results to hold irrespective of the choice of a specific
algorithm or implementation. That is why we define our formal description of theory
of mind at Marr’s computational level.

2.2 The Tractable Cognition Thesis

It is generally assumed among cognitive scientists that human cognitive capacities
are constrained by computational tractability. This assumption is also known as the
Tractable Cognition thesis (Frixione 2001; van Rooij 2008). The main ingredients of
this thesis are (1) the observation that humans have limited cognitive resources, and
(2) human cognitive capacities are confined to those that can be realized in a realistic
amount of time, given the available cognitive recourses. To see that (1) is the case it
is enough to realize that humans are finite beings in a finite surrounding and that our
resources for cognitive processing are thereby bounded. Whether we see cognition as
something that is done by means of our brain, the rest of our body, our environment,
or by the interaction of these, these bounds remain. Clearly, any process that would
involve more particles than there are present in the universe and millions of years to
complete, would not be a plausible explanation of human cognition.

Intuitively we can understand the notion of intractability of models of cognition by
looking at the goal of cognitive science and the notion of scalability. Cognitive science
can be described as the study of human cognitive capacities, and one of its primary aims
is to form theories that explain what these capacities are exactly, and how they work
(Cummins 2000). The goal is to understand these capacities, taking into account the
wide variety and richness of howwemanifest them in real life. A commonway to study
these capacities is by means of experiments in which subjects are asked to perform a
specific task. To meet scientific standards of controllable conditions and feasibility in
lab settings, the situations that are presented in experiments are of much smaller scale
than the wide range of situations that people face in their daily lives. So in practice
these experiments deal with the specific application of a capacity in a toy domain, as
a way to tap into the full-blown capacity. Given that humans have limited cognitive
resources, a model of a cognitive capacity needs to be scalable in such a way that it
can potentially also explain howwe apply the capacity in real-world situations that are
muchmore varied, open ended, and of larger size than the toy domains of experimental
settings. An intuitive way of thinking about the (in)tractability of models of cognition
is by this notion of scalability. When a model is intractable then it cannot plausibly
scale up to provide explanations for the domain of real-life situations.

2.3 The P-Cognition Thesis

For the tractable cognition thesis to be of optimal use, we of course want to be more
formally precise about what it means for a model to be intractable. There have been
several proposals for how to formalize this by using tools from computational com-

123



260 I. van de Pol et al.

plexity theory. In computational complexity theory the classical characterization of
(in)tractability is done by the distinction between polynomial-time computability and
NP-hardness (see, e.g., Garey and Johnson 1979). The class of computational prob-
lems that are polynomial-time solvable are seen as tractable, whereas problems that
areNP-hard are considered intractable. If the commonly believed (yet unproven) claim
that P �= NP holds, then NP-hard problems cannot be solved in polynomial time.2 The
fastest known algorithms for NP-hard problems take more than polynomial time, e.g.,
exponential time. In the same way as we described for unscalable models of cognition,
it holds for NP-hard problems that small sized inputs might very well be manageable.
However, as their inputs grow bigger, the time needed to solve them will quickly blow
up to astronomical proportions.

This classical definition of intractability has been the inspiration for the formal-
ization of the Tractable Cognition thesis in the form of the P-cognition thesis. The
P-cognition thesis states that cognitive capacities are confined to those that can
be realized using at most a polynomial amount of time (Frixione 2001; van Rooij
2008). This means that when we characterize cognitive capacities in the form of a
computational-level model, that we only consider those input-output mappings that
are polynomial-time computable as potential plausible models of cognition, in terms
of the cognitive recourses that are required. Note that this is not the same as saying
that all polynomial-time computable models are plausible models of cognition—being
polynomial-time computable is merely posed as a necessary condition, not as a suffi-
cient condition.

2.4 The FPT-Cognition Thesis

An objection that has been posed to the P-cognition thesis by van Rooij (2008) is
that the P-cognition thesis is too restrictive and risks rejecting potentially plausible
models of cognition. When a computational problem is NP-hard for a certain input
domain, this means that there is no algorithm that can solve the problem in polynomial
time for all inputs in that domain. It could however be that when the input domain is
restricted to inputs with a certain structure, the problem becomes much easier to solve.
An example of this is the Traveling Salesperson Problem. The input to this problem is a
set of cities, distances between them, a point of departure, and amaximum route length.
The question that is asked is whether there is a route that starts and ends in the point
of departure, visits all other cities exactly once, and does not exceed the maximum
route length. This problem is known to be NP-hard when allowing all possible inputs
to the problem (Karp 1972). However, when the cities are aligned exactly on a circle,
the problem becomes almost trivial to solve. Even when not all cities are aligned on a
circle but many of them are and those that are not lay inside this circle, the problem is
still relatively easy to solve. This property of cities being close to aligned on a circle
can be captured by drawing a line around the outermost cities (more formally, drawing

2 In the most recent poll by Gasarch (2012) an overwelming majority of computer scientists thinks that
P �= NP.
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the convex hull) and looking at the cities that lay in the interior of this hull. The fewer
cities there are inside the hull, the easier the problem becomes to solve.

This notion of problems being easier to solve for inputs with a certain structure is
captured by the computational complexity notion of fixed-parameter tractability. This
notion is a central tool within parameterized complexity theory, a branch of complexity
theory where complexity is measured not only in terms of the input size, but also in
terms of an additional parameter (see, e.g., Downey and Fellows 2013). This parameter
can be defined in such a way that it captures a particular type of structure in an input,
where a low value of the parameter signifies that an input is highly structured, and
a high value of the parameter means that an input has little structure. The Traveling
Salesperson Problem, for instance, has been proven to be fixed-parameter tractable
when parameterized by the number of interior points in the convex hull (Deineko et al.
2006).

This parameterized notion of tractability was the inspiration for the FPT-cognition
thesis by van Rooij (2008), which states that cognitive capacities are confined to those
that can be realized using at most a fixed-parameter amount of time for one or more
input parameters that are small in practice. Since all models that are polynomial-
time solvable are also fixed-parameter tractable, this means that the FPT-cognition
thesis is a relaxed version of the P-cognition thesis. It allows for all models that were
recognized by the P-cognition thesis as being tractable, and in addition it allows some
more models that were not recognized by the P-cognition thesis as being tractable.

NP-hard models of cognition pervade cognitive science, spanning many different
cognitive domains, such as vision (Tsotsos 1990; vanRooij 2003), reasoning (Oaksford
and Chater 1998; Levesque 1988; Reiter 1980), planning (Bylander 1994; Newell and
Simon 1988), language (Barton et al. 1987; Ristad 1993; Szymanik 2016; Wareham
1999) and decision-making (Otworowska et al. 2017; van Rooij et al. 2005). Under
the P-cognition thesis it would be a natural response to disregard those models and
scrape them from the list of plausible models. Such a practice would most likely lead
to throwing out the baby with the bathwater. Models of cognition are often built on
and informed by years of (experimental) research. When a model is NP-hard this
does not mean that all parts of it are false or useless, on the contrary. An NP-hard
model of cognition might be heading exactly in the right direction, capturing much of
how a certain capacity really works. It could be the case that the intractability of that
model is a result of overgeneralisation (see van Rooij 2015). This would mean that
the model captures a much broader phenomenon, which might include capacities that
people actually (can) perform but in addition also includesmore general capacities that
people do not and cannot perform. Fixed-parameter tractability can be a useful tool to
explore how a model is overly general, and to identify structural properties related to
the capacity of interest, that could be exploited to make a certain problem tractable.
These ideas will be made precise in Sect. 4, after introducing our model of theory of
mind. In our analysis of the complexity of theory of mind and in the interpretation of
our results, we use the FPT-cognition thesis as our theoretical framework.
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3 Formalizing Theory of Mind Using Dynamic Epistemic Logic

In this section we present a computational-level model of a subcapacity of theory of
mind, namely the updating of beliefs about beliefs in dynamic epistemic logic. First,
we introduce some basic concepts and definitions of dynamic epistemic logic. Then,
we give both an intuitive description and a formal definition of the model, and we
illustrate this with an example.

3.1 Preliminaries: Dynamic Epistemic Logic

Dynamic epistemic logic (DEL) is a particular kind of modal logic (see van Benthem
2011; van Ditmarsch et al. 2008), where the modal operators are interpreted in terms
of belief or knowledge. For the reader that is familiar with the details of DEL it
suffices to know that we use the same framework as van Ditmarsch et al. (2008) with
two modifications. Following Bolander and Andersen (2011), we allow both single
and multi-pointed models, and we include postconditions in our event models (which
are mappings to propositional literals). The postconditions allow modeling ontic, i.e.,
factual, change, in addition to epistemic change—which we believe is needed for a
general applicability of the model. Furthermore the use of multi-pointed models allow
for representing the internal perspective of an observer (cf. Aucher 2010; Dégremont
et al. 2014; Gierasimczuk and Szymanik 2011), instead of the perfect external view
(i.e., the omniscient god perspective). For the purpose of this paper we focusmainly on
epistemic models and event models as semantic objects and less on the corresponding
language.

First, we define epistemic models, which are Kripke models with an accessibility
relation for every agent a ∈ A. Epistemic models are used to represent facts and
beliefs in a given situation. Intuitively, an epistemic model represents how agents
perceive a given situation: their knowledge, beliefs, or uncertainty about the facts and
(the knowledge, beliefs, or uncertainty of) the other agents in that situation.

Definition 1 (Epistemic model) Given a finite set A of agents and a finite set P of
propositional variables, an epistemic model is a tuple (W, R, V ), where:

– W is a non-empty set of worlds;
– R is a function that assigns to every agent a ∈ A a binary relation Ra on W ; and
– V is a valuation function from W × P into {0, 1}.
The accessibility relations Ra can be read as follows: for worlds w, v ∈ W , wRav

means ‘in world w, agent a considers world v possible.’

Definition 2 (Pointed epistemic model) A pair (M,Wd) consisting of an epistemic
modelM = (W, R, V ) and a non-empty set Wd ⊆ W of designated worlds is called
a pointed epistemic model. A pair (M,Wd) is called a single-pointed model whenWd

is a singleton and a multi-pointed epistemic model when |Wd | > 1. By a slight abuse
of notation, for (M, {w}), we also write (M, w).

We consider the usual restrictions on relations in epistemic models and event mod-
els, such as KD45 and S5 relations (see van Ditmarsch et al. 2008). In KD45 models,
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all relations are transitive, Euclidean, and serial, and in S5 models all relations are
transitive, reflexive, and symmetric.

We define the following language for epistemic models. We use the modal belief
operator B, where for each agent a ∈ A, Baϕ is interpreted as ‘agent a believes
(that) ϕ.’

Definition 3 (Epistemic language) The language LB over A and P is given by the
following definition, where a ranges over A and p over P:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ.

We will use the following standard abbreviations, � := p∨¬p,⊥ := ¬�, ϕ ∨ψ :=
¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ , B̂aϕ := ¬Ba¬ϕ.

The semantics for this language is defined as follows.

Definition 4 (Truth in a single-pointed epistemic model) Let M = (W, R, V ) be an
epistemic model, w ∈ W , a ∈ A, and ϕ,ψ ∈ LB . We define M, w |
 ϕ inductively
as follows:

M, w |
 p iff V (w, p) = 1;
M, w |
 ¬ϕ iff not M, w |
 ϕ;
M, w |
 (ϕ ∧ ψ) iff M, w |
 ϕ and M, w |
 ψ; and
M, w |
 Baϕ iff for all v with wRav : M, v |
 ϕ.

When M, w |
 ϕ, we say that ϕ is true in w or ϕ is satisfied in w.

Definition 5 (Truth in a multi-pointed epistemic model) Let (M,Wd) be a multi-
pointed epistemic model, a ∈ A, and ϕ ∈ LB .M,Wd |
 ϕ is defined as follows:

M,Wd |
 ϕ iffM, w |
 ϕ for all w ∈ Wd .

Next, we define event models. Event models represent changes brought about in
some initial situation by actions or events and how these changes are perceived by
agents, i.e., what these agents consider to have occurred and how this influences their
beliefs. Such actions or events may be as broad as agents reading, speaking, hearing,
or seeing, or physical changes in the environment. Event models are constructed very
similarly to epistemic models. Intuitively, the events in an event model represent the
possible events that are considered by the agents, and the relations between these
events represent the knowledge, beliefs, or uncertainty of the agents about the actual
event that has taken place.

Definition 6 (Event model) An event model is a tuple E = (E, Q,pre,post), where
E is a non-empty finite set of events; Q is a function that assigns to every agent a ∈ A
a binary relation Qa on E ; pre is a function from E to LB that assigns to each event a
precondition, which can be any formula in LB ; and post is a function from E to LB

that assigns to each event a postcondition. Postconditions are conjunctions of literals:
propositional variables and their negations (including �).
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The accessibility relation Qa can be read as follows: for events e, f ∈ E : eQa f
means ‘in event e, agent a considers event f possible.’

Definition 7 (Pointed event model / action) A pair (E, Ed) consisting of an event
model E = (E, Q,pre,post) and a non-empty set Ed ⊆ E of designated events is
called a pointed event model. A pair (E, Ed) is called a single-pointed event model
when Ed is a singleton and a multi-pointed event model when |Ed | > 1. We will use
the term “action” interchangeably with the term “event model”.

We define the notion of a product update, which is used to update epistemic models
with event models (Baltag et al. 1998). Updating a pointed epistemic model with an
(applicable) event model yields a new pointed epistemicmodel. Updating an epistemic
model with an event model can result in a change in the domain, the relations, and/or
the valuation of an epistemic model. The resulting epistemic model represents how
the facts in the initial situation changed and how the agents updated their beliefs by
the occurrence of the event.

Definition 8 (Product update) The product update of the state (M,Wd) with the
action (E, Ed) is defined as (M,Wd) ⊗ (E, Ed) = ((W ′, R′, V ′),W ′

d), where:

– W ′ = {(w, e) ∈ W × E ; M, w |
 pre(e)};
– R′

a = {((w, e), (v, f )) ∈ W ′ × W ′ ; wRav and eQa f };
– V ′((w, e), p) = 1 iff (M, w |
 p and ¬p /∈ post(e)) or p ∈ post(e); and
– W ′

d = {(w, e) ∈ W ′ ; w ∈ Wd and e ∈ Ed}.
Finally, we define when event models are applicable in a state.

Definition 9 (Applicability)We say that an eventmodel or action (E, Ed ) isapplicable
in state (M,Wd) if there is some e ∈ Ed and somew ∈ Wd such thatM, w |
 pre(e).
We define applicability for a sequence of event models or actions inductively. The
empty sequence, consisting of no actions, is always applicable. A sequence a1, . . . , ak
of actions is applicable in a pointed epistemic model (M,Wd) if (1) the sequence
a1, . . . , ak−1 is applicable in (M,Wd), and (2) the action ak is applicable in (M,Wd)⊗
a1 ⊗ · · · ⊗ ak−1.

For convenience, we will depict epistemic models and event models graphically.
We represent worlds with solid dots and events with solid squares, and we indicate the
designated world(s) or event(s) with a circle or a square around that world or event.
We represent the relations between worlds or events with lines that are labeled with
the relevant agent symbols. Valuations are represented as labels next to the worlds:
we label only those propositional variables that are true in a given world. Events are
labeled with a tuple 〈pre,post〉: the first element of the tuple is the precondition and
the second element is the postcondition of the event. When an element of the tuple
is �, this means that the event has no precondition (or postcondition). See Fig. 1 for
an example of an epistemic model and Fig. 2 for an example of an event model. All
epistemic models and event models that we present in our proofs are S5 models, i.e.,
they have equivalence relations. For the sake of presentation, in all our drawings we
replace each relation Ra with some R′

a , whose transitive reflexive closure is equal
to Ra . For instance, each world has a reflexive relation to itself for every agent, which
we omit.
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z

w1 w2

a

Fig. 1 The epistemic model (M, w1) for the set A = {a, b} of agents and a single propositional
variable z, where M = (W, R, V ), W = {w1, w2}, Ra = {(w1, w1), (w1, w2), (w2, w1), (w2, w2)},
Rb = {(w1, w1), (w2, w2)}, and V (w1, z) = 1 and V (w2, z) = 0

〈�, h〉

e1

〈�, ¬h〉

e2

a

Fig. 2 The event model (E, e1) for the set A = {a, b} of agents and a single propositional vari-
able h, where M = (E, S,pre, post), E = {e1, e2}, Ra = {(e1, e1), (e1, e2), (e2, e1), (e2, e2)},
Rb = {(e1, e1), (e2, e2)}, pre(e1) = pre(e2) = �, post(e1) = h, and post(e2) = ¬h

3.2 Dynamic Belief Update

Next, we present a computational-level model of a central sub-capacity of theory
of mind reasoning, namely the updating of beliefs about beliefs, based on observed
behavior and other factors of change. Our aim is to capture, in a qualitative way, the
kind of reasoning that is necessary to be able to engage in (higher-order) theory of
mind reasoning. We model this using dynamic epistemic logic (DEL), which allows
us to parameterize higher-order reasoning. Specifically, we use a special case of the
model checking problem for DEL. Complexity results (hardness) for this sub-capacity
will hold (as a lower-bound) for the complexity of the full capacity. We present the
model in the form of a decision problem, so that we can analyze its computational
complexity using hardness-tools from computational complexity theory. A defining
feature of theory ofmind reasoning is the fact that it can vary in order. ‘Ahmed believes
that I will pick him up at eight,’ is an example of first-order belief attribution. ‘Trish
thinks that Fernando knows that we will throw him a surprise party,’ is an instance of
second-order belief attribution.We formalize this order of theory of mind as the modal
depth of epistemic formulas since a first-order belief attribution may be formalized
by some sentence Ba p with modal depth one and a second-order belief attribution by
some sentence BaBb p with modal depth two, and so on.

Intuitively, the following happens in the model. First, there is an initial situation in
which a subject observes one or more agents. This subject has certain beliefs about
the epistemic states and the (worldy) facts in this initial situation. Then, the subject
observes some actions or events that bring about certain factual or epistemic changes.
Based on this, the subject updates their beliefs about the epistemic states and the facts
in the new situation.

The input of the model consists of the initial situation and the sequence of actions
and events that happen, together with a question about the new situation. For instance,
‘does agent X believe Y?’ The output of the model is the answer to that question. So
in this case either ‘yes, agent X believes Y,’ or ‘no, agent X does not believe Y.’ Such
a set-up is often found in experimental tasks, where subjects are asked to reason about
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the epistemic states of agents in a scenario that they are presented. It might feel more
natural to model such cognitive tasks as a search problem, where the question is, for
instance, ‘what does agent X believe?’ or ‘what does agent X belief about Y?’ We
pose the model in the form of a decision problem, as this is convenient for analyzing
its computational complexity. Since the complexity of the decision problem holds as
a lower bound for the complexity of such a search problem, considering the decision
problem suffices for the purpose at hand.

Consider the following scenario, which is used in the Sally-Anne task (Baron-
Cohen et al. 1985; Wimmer and Perner 1983; see Fig. 3 for an illustration). This is
the classical task that is used to test theory of mind, specifically reasoning about false-
belief, in young children. Initially, we see Sally and Anne with a box and a basket.
Sally has a marble that she puts into the basket. Then Sally leaves and Anne puts
the marble into the box. After this, Sally comes back and we are asked where Sally
thinks that the marble is. We could model this as an instance of our model, as an
input consisting of an initial situation, an event, and a question. In the initial situation
both Sally and Anne know that the marble is in the basket. Then there is the event in
which Sally leaves and Annemoves the marble into the box. Applying this event to the
initial situation leads to a new situation in which the marble is in the box, Anne knows
that the marble is in the box, and Sally believes that the marble is in the basket. The
question would be: ‘does Sally believe that the marble is in the basket?’ The output
of the model would be, ‘yes, Sally believes that the marble is in the basket.’ There are
also second-order versions of this false believe task (see Miller 2009). Since we are
interested in the effect of higher-order reasoning on the (in)tractability of theory of
mind, the second-order version is very relevant to our story. For simplicity we model
only the first-order false belief task here to explain how our model works.

In our model the initial situation is given in the form of a pointed epi-
stemic model (M0,Wd), and the actions and events are given as event mod-
els (E1, E1), . . . , (Eu, Eu). The question is given as a statement ϕ in language LB , for
which we ask whether ϕ is true in the updated model, (M0,Wd) ⊗ (E1, E1) ⊗ · · · ⊗
(Eu, Eu), i.e., the model that results from updating the initial situation (M0,Wd)with
event models (E1, E1) to (Eu, Eu). That is, we ask whether (M0,Wd) ⊗ (E1, E1) ⊗
· · · ⊗ (Eu, Eu) |
 ϕ. The full definition of the model is as follows.

DBU – Dynamic Belief Update

Instance: Aset of propositional variables P and a set ofAgentsA. An initial
situation (M0,Wd), where M0 = (W, V, R) is an epistemic
model.An applicable sequence of events (E1, E1), . . . , (Eu, Eu),
where E j = (E, Q, pre, post) is an event model. A formula
ϕ ∈ LB .

Question: Is ϕ true in the final updated model; i.e., does (M0,Wd) ⊗
(E1, E1) ⊗ · · · ⊗ (Eu, Eu) |
 ϕ?
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Fig. 3 Scenario of the Sally-Anne task from Frith (2001). With kind permission from the artist, Axel
Scheffler

Now we can use this Dynamic Belief Update model to formalize the Sally-
Anne task. This formalization is similar to the one presented by Bolander (2014). See
Fig. 4 for a graphical presentation of our formalization of the Sally-Anne task.
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Fig. 4 Formalisation of the Sally-Anne task as an instance of the Dynamic Belief Update model
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4 Computational Complexity Results

Next, we analyze the computational complexity of the Dynamic Belief Update
model that we presented in the previous section. As we explained earlier, our aim is to
investigate whether the ‘order’ of higher-order theory of mind reasoning is a source
of intractability. We show that, without additional restrictions, the model is PSPACE-
hard, and that, possibly counterintuitively from a cognitive science perspective, the
‘order parameter’ is not a source of intractability. We also consider several other
parameters of the model to investigate which of them are sources of intractability (see
Table 1 for an overview of these parameters and Fig. 24 for an overview of the results).
We show that only when restricting both the number of event models and the number
of events in these event models, the model becomes tractable. We first review some
basic notions from both classical and parameterized complexity theory. Readers that
are familiar with these notions could skip Sects. 4.1 and 4.2.

4.1 Preliminaries: Classical Complexity Theory

We introduce some basic concepts of classical complexity theory. For a more detailed
treatment we refer to textbooks on the topic (e.g., Arora and Barak 2009).

In complexity theory, computational problems are often studied in the form of
decision problems. Decision problems represent yes-no questions that are asked about
a given input. Let � be a finite alphabet. A decision problem L (over �) is a subset
of�∗, where�∗ is the set of all strings over the alphabet�, i.e.,�∗ = ⋃{�m;m ∈ N}.
We call x ∈ �∗ a yes-instance of L if and only if x ∈ L , and a no-instance if and only
if x /∈ L . To simplify notation, we usually do not mention the underlying alphabet
explicitly.

The concept of efficiently solvable problems is captured by the complexity class P,
which denotes the class of all decision problems that can be decided by a polynomial-
time algorithm, i.e., an algorithm that runs in time c1 · nc2 for some constants c1,
and c2, where n denotes the input size. In order to give evidence that certain problems
are intractable (i.e., are not in P), complexity theory offers a theoretical tool that is
based on the following complexity class: NP.

The class NP consists of all decision problems for which yes-instances can be
verified in polynomial time. Let L be a decision problem, and let x be an instance
of L . Then L is in class NP if there exists a polynomial-time computable function f
(a verifier), such that x is a yes-instance of L if and only if there exists a certificate u
of polynomial size, such that f (x, u) = 1. Alternatively, NP can be defined as the
class of all decision problems that can be solved by a nondeterministic algorithm that
runs in polynomial time. Intuitively, a nondeterministic algorithm is an algorithm that
can make guesses during the computation. This algorithm is said to solve the problem
if there is at least one sequence of guesses that leads the algorithm to accept. The
algorithm is said to run in polynomial time if for all possible sequences of guesses the
algorithm terminates in polynomial time.

Another crucial part of this intractability tool is the notion of polynomial-time
reductions. Let L and L ′ be two decision problems. A polynomial-time reduction

123



270 I. van de Pol et al.

from L to L ′ is a mapping R from instances of L to instances of L ′ such that: (1) for
all instances x of L it holds that x ′ = R(x) is a yes-instance of L ′ if and only if x is a
yes-instance of L , and (2) R is computable in polynomial time.

We can now describe the final notions that we need for the theoretical tool to show
intractability: the notions of hardness and completeness for a certain complexity class.
Let L be a decision problem and K a complexity class. Then (1) L is K-hard if each
problem L ′ in K is polynomial-time reducible to L , and (2) L is K-complete if L is
K-hard and in K. Intuitively, problems that are hard for class K belong to the most
difficult problems in K.

It follows from the definitions that P ⊆ NP. Furthermore, it is widely believed that
P �= NP (see, e.g., Fortnow 2009; Gasarch 2012). This conjecture implies that NP-
hard problems are not polynomial-time solvable. Therefore, showing that a problem
is NP-hard gives evidence that this problem is intractable.

Another class that can be used in a similar way to show intractability is the class
PSPACE. This class consists of all problems that can be solved by an algorithm that
runs in at most polynomial space. Intuitively, this can be seen as an algorithm that
uses a polynomial amount of memory. The class PSPACE is a superset of NP, and a
problem that is PSPACE-hard is not polynomial-time solvable, unless P = NP.

4.2 Preliminaries: Parameterized Complexity Theory

We introduce some basic concepts of parameterized complexity theory. For a more
detailed introduction we refer to textbooks on the topic (Downey and Fellows 1999,
2013; Flum and Grohe 2006; Niedermeier 2006).

A parameterized problem is similar to a decision problem. In a parameterized prob-
lem each instance is paired to a particular parameter value. Let � be a finite alphabet.
A parameterized problem L (over �) is a subset of �∗ × N. For an instance (x, k),
we call x the main part and k the parameter.

The complexity class FPT, which stands for fixed-parameter tractable, is the direct
analogue of the class P in classical complexity. Problems in this class are considered
efficiently solvable because the non-polynomial-time complexity inherent in the prob-
lem is confined to the parameter and in effect the problem is efficiently solvable even
for large input sizes, provided that the value of the parameter is relatively small.

Let � be a finite alphabet. An algorithm A with input (x, k) ∈ � × N runs in
fpt-time if there exists a computable function f and a polynomial p such that for
all (x, k) ∈ �×N, the running time ofA on (x, k) is at most f (k) · p(|x |). Algorithms
that run in fpt-time are called fpt-algorithms. A parameterized problem L is fixed-
parameter tractable if there is an fpt-algorithm that decides L . FPT denotes the class
of all fixed-parameter tractable problems.

Similarly to classical complexity, parameterized complexity also offers a hardness
framework to give evidence that (parameterized) problems are not fixed-parameter
tractable. The following notion of reductions plays an important role in this framework.

Let L and L ′ be two parameterized problems. An fpt-reduction from L to L ′ is a
mapping R from instances of L to instances of L ′ for which there is a computable
function g : N → N such that: (1) for all instances (x, k) of L it holds that (x ′, k′) =
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R(x, k) is a yes-instance of L ′ if and only if (x, k) is a yes-instance of L , (2) R is
computable in fpt-time, and (3) k′ ≤ g(k).

Another important part of the hardness framework is the parameterized intractabil-
ity class W[1]. To characterize this class, we consider the following parameterized
problem.

{k}-WSat[2CNF]

Instance: A 2CNF propositional formula ϕ and an integer k.
Parameter: k.
Question: Is there an assignment α : var(ϕ) → {0, 1} that sets k

variables in var(ϕ) to true and satisfies ϕ?

The class W[1] consists of all parameterized problems that can be fpt-reduced
to {k}-WSat[2CNF]. A parameterized problem is hard for W[1] if all problems in
W[1] can be fpt-reduced to it. It is widely believed that W[1]-hard problems are not
fixed-parameter tractable (see Downey and Fellows 2013).

Another parameterized intractability class, which can be used in a similar way, is
the class para-NP. The class para-NP consists of all parameterized problems that can
be solved by a nondeterministic algorithm that runs in fpt-time.

W[1] is a subset of para-NP. This implies that para-NP-hard problems are not fixed-
parameter tractable, unlessW[1] = FPT. In fact, the conjecture P �= NP already implies
that para-NP-hard problems are not fixed-parameter tractable (Flum and Grohe 2006,
Theorem 2.14). To show para-NP-hardness, it suffices to show that DBU is NP-hard
for a constant value of the parameters (Flum and Grohe 2003).

4.3 PSPACE-Completeness

We show that Dynamic Belief Update (DBU) is PSPACE-complete. Our proof
holds for the general case (without any specific restrictions on the relations), and
furthermore it holds when the problem is restricted to single-pointed S5 or KD45
models. SinceDBU is a special case of DELmodel checking, this hardness result also
holds for the more general case of DEL model checking that is usually considered in
the literature.

Aucher and Schwarzentruber (2013) and van Eijck and Schwarzentruber (2014)
showed PSPACE-completeness for DEL model checking in the unrestricted case.
Since their proofs depend on the use of multi-pointed models, their results do not hold
for the case restricted to single-pointed S5 models. Bolander et al. (2015) considered a
special case of DEL model checking that is very similar to the one we consider. They
show PSPACE-completeness for the case restricted to single-pointed models, but their
proof does not settle whether hardness holds even when the problem is restricted to
single-pointed S5 models.

For our reduction, we consider the decision problem True Quantified Boolean
Formulas (TQBF), which is the canonical PSPACE-complete problem (Stockmeyer
and Meyer 1973).
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True Quantified Boolean Formulas (TQBF)

Instance: A quantified Boolean formula ϕ = Q1x1Q2x2 . . . Qmxm .ψ .
Question: Is ϕ true?

Theorem 1 DBU is PSPACE-hard.

Proof To show PSPACE-hardness, we specify a polynomial-time reduction from
TQBF to DBU. Let ϕ = Q1x1 . . . Qmxm .ψ be a quantified Boolean formula with
quantifiers Q1, . . . , Qm and var(ϕ) = {x1, . . . , xm}, where var(ϕ) denotes the set of
variables in ϕ. We construct a single-pointed epistemic model (M, w0), an applicable
sequence of single-pointed event models (E1, e1), . . . , (Em, em), and a formula [ϕ] ∈
LB , such that ϕ ∈ TQBF if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em, em) |
 [ϕ].

Amain principle of the reduction is that the final updatedmodelMm = (M, w0)⊗
(E1, e1)⊗· · ·⊗(Em, em) represents exactly all possible truth assignments to var(ϕ).We
map the variables of ϕ, x1, . . . , xm , to agents 1, . . . ,m, and we use these to represent
the truth values of the variables x1, . . . , xm under a given assignment. Furthermore,
we use a distinguished agent a to construct Ra-equivalence classes that represent
particular truth assignments to var(ϕ), and we call these groups of worlds. In a group
that represents assignment α, world w represents that xi is true under α if there is
an Ri -edge from w to a world w′ where propositional variable y (a new variable, that
we introduce) is true. If there is no such world in the group, this represents that xi is
false under α.

The other general principle of the reduction is that we use the modal operator B
and its dual B̂ := ¬B¬ to simulate the behavior of the quantifiers in ϕ. To define [ϕ],
we first define the following polynomial-time computable mappings. For 1 ≤ i ≤ m,
let:

[Qi ] =
{
Bi if Qi = ∀;
B̂i if Qi = ∃.

We define [ψ] to be the adaptation of formula ψ where every occurrence of xi
in ψ is replaced by B̂a B̂i y. Now we let [ϕ] = [Q1] . . . [Qm][ψ]. So, for exam-
ple, [∀x1∃x2.x1 ∨ x2] = B1 B̂2(B̂a B̂1y ∨ B̂a B̂2y).

In Fig. 5 we give an example of such a group of worlds that represents assignment
α = {x1 �→ T, x2 �→ F, x3 �→ F, x4 �→ T}. Each world has a reflexive relation to
itself for every agent, which we omit from our illustrations for the sake of presentation.
More generally, in all our drawings we replace each relation Ra with some R′

a whose
transitive reflexive closure is equal to Ra .

Now, we construct an initial model, (M, w0), that represents the truth assignment
to var(ϕ) that maps every variable of ϕ to true. Model (M, w0) is a single-pointed
epistemic model with agents a, 1, . . . ,m and propositional variable y. It consists of
worlds w0, w1, . . . , wm, w′

1, . . . , w
′
m , of which worlds w0, w1, . . . , wm are an Ra-

equivalence class: a group of worlds. See Fig. 6 for an illustration. Again, each world
has a reflexive loop for every agent, which we leave out for the sake of presentation.
This will be the case for all drawings that we present.
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Fig. 5 The group of worlds M = {w0, w1, w2} that represents assignment α = {x1 �→ T, x2 �→ F, x3 �→
F, x4 �→ T}, in the proof of Theorem 1
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Fig. 6 The epistemic model (M, w0), used in the proofs of Theorem 1, Proposition 2, and Proposition 5
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〈�, �〉
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〈Bi¬y ∨ (y ∧ Biy), �〉
i

Fig. 7 The event model (Ei , ei ), used in the proof of Proposition 1

Then we construct a sequence of applicable single-pointed event models (E1, e1),
. . . , (Em, em). For each 1 ≤ i ≤ m, we define (Ei , ei ) as shown in Fig. 7. Event mod-
els (E1, e1), . . . , (Em, em) are used to extend the initial model into model (M, w0) ⊗
(E1, e1) ⊗ · · · ⊗ (Em, em), which represents all possible truth assignments to the vari-

123



274 I. van de Pol et al.

ables of ϕ. Each event model (Ei , ei ) copies the entire previous model, and in addition,
for each group of worlds in the previous model it adds a slightly adapted group of
worlds. This happens in such a way that the assignment that the adapted group of
worlds represents, differs from the assignment that the original group of worlds repre-
sents, only in the assignment to the variable xi , setting it to false in the adapted group.
The preconditions of event model (Ei , ei ) work as follows. When updating some pre-
vious model—either (M, w0) or some (M, w0)⊗(E1, e1)⊗· · ·⊗(Ei−1, ei−1)—with
event (Ei , ei ), event ei copies the entire previous model. Event e′

i copies an adaptation
of each group of worlds by leaving out each pair of worlds w,w′, with wRiw

′ and
w �= w′, that represents variable i . It does this by copying only those worlds w from
which there is no Ri -edge to a world in which propositional variable y is true, i.e., by
copying worlds in which Bi¬y is true. In addition, event e′

i also copies worlds w′ in
which y is true and from which there is no Ri -edge to a world in which propositional
variable y is false, i.e., by copying worlds in which y ∧ Bi y is true.

Now, how this reductionworks is that in the final updatedmodelMm = (M, w0)⊗
(E1, e1)⊗· · ·⊗(Em, em) one can, as it were, move from the designated world and visit
different groups by taking a path that alternates between different Ri -steps, where 1 ≤
i ≤ m. The group that is reachable directly from the designated world represents
an assignment where all variables in ψ are set to true. Furthermore, one can walk
different paths through the model starting from the designated world, which will bring
you to different groups of worlds. Given a group of worlds that represents a particular
assignment α, taking a (non-reflexive) Ri -step will lead to a group of worlds that
represents some α′ that differs from α only in the value it gives to xi .

By the way we defined [ϕ], we can now simulate the behavior of the quantifiers in ϕ

and verify whether ϕ is a true quantified Boolean formula by doing model checking
for Mm . To illustrate this, we give an example. Figure 8 shows the final updated
model for a quantified Boolean formula with variables x1 and x2. In this model there
are four groups of worlds: {w0, w1, w2}, {w3, w4}, {w5, w6}, and {w7}, representing
respectively assignments {x1 �→ T, x2 �→ T}, {x1 �→ F, x2 �→ T}, {x1 �→ T, x2 �→
F}, and {x1 �→ F, x2 �→ F}. Note that for each Boolean formula ϕ with |var(ϕ)| = m,
model (Mm, w0) is identical, irrespective of the structure of ϕ. The only difference
in constructing the reduction is in the construction of [ϕ].

Then, verifying whether, for instance, formula ∃x1∀x2.x1 ∨ x2 is true can be done
by checking whetherMm |
 B̂1B2(B̂a B̂1y ∨ B̂a B̂2y), which is indeed the case. This
is because the construction ofMm works in such a way that formula ∃x1∀x2.x1∨ x2 is
true if and only if fromw0 one can take an R1-step to a group of worlds M from where
all groups of worlds M ′ that are reachable by an R2-step represent an assignment that
makes x1∨x2 true. In the samemanner, verifyingwhether ∀x1∀x2.x1∨x2 is true can be
done by checkingwhether B1B2(B̂a B̂1y∨ B̂a B̂2y) is true inMm , which is not the case.

We say that group of worlds M in modelMm agrees with α if M represents some
assignment β to var(ϕ) and α ⊆ β. We say that w is the base world of M if w is the
unique world in M such that there is no edge from w to a world where y is true. For
example, in Fig. 8, worlds w0, w3, w5, w7 are the base worlds.

We show that ϕ ∈ TQBF if and only if (M, w0)⊗ (E1, e1)⊗· · ·⊗ (Em, em) |
 [ϕ].
We do so by proving, with downwards induction, that for all 1 ≤ i ≤ m + 1 the
following claim holds.
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{x1 �→ T, x2 �→ T} :

{x1 �→ F, x2 �→ T} :

{x1 �→ T, x2 �→ F} :

{x1 �→ F, x2 �→ F} :

Fig. 8 Example for the reduction in the proof of Theorem 1: a final updated model for a quantified Boolean
formula with variables x1 and x2. In this model there are four groups of worlds: {w0, w1, w2}, {w3, w4},
{w5, w6} and {w7}, representing respectively assignments {x1 �→ T, x2 �→ T}, {x1 �→ F, x2 �→ T}, {x1 �→
T, x2 �→ F}, and {x1 �→ F, x2 �→ F}

Claim:Letα be any truth assignment to the variables x1, . . . , xi−1. LetM be any group
of worlds in modelMm = (M, w0)⊗ (E1, e1)⊗· · ·⊗ (Em, em) that represents some
assignment β to the variables x1, . . . , xm , with α ⊆ β. Let w be the base world of M .
Then Qi xi . . . Qmxm .ψ is true under α if and only if [Qi ] . . . [Qm][ψ] is true in w. In
the case for i = m + 1, Qi xi . . . Qmxm .ψ refers to formula ψ and [Qi ] . . . [Qm][ψ]
to [ψ].

We start by showing that the claim holds for i = m+1. Let α be any assignment to
the variables x1, . . . , xm , and let w be the base world of a group of worlds M inMm

that represents assignment β, with α ⊆ β. In this case M not only agrees with α, but in
fact α = β. Since M represents assignment β, then, by construction ofMm , for each
variable x j of ϕ that is true under β, there is an Ra-edge fromw to a world fromwhich
there is an R j -edge to a world where y is true, meaning that (Mm, w) |
 B̂a B̂ j y. Sim-
ilarly, for each variable xk of ϕ that is false under β, we have that (Mm, w) �|
 B̂a B̂k y.
Then, by construction of [ψ], we know that ψ is true under α if and only if [ψ] is true
in w. Therefore, the claim holds for i = m + 1.

Now assume that the claim holds for i = j + 1, for an arbitrary j ≥ 1. We
show that then the claim also holds for i = j . Let α be any assignment to the vari-
ables x1, . . . , x j−1, and let w be the base world of a group M that agrees with α. We
show that the formula Q j . . . Qm .ψ is true under α if and only if [Q j ] . . . [Qm][ψ] is
true in w.

First, assume that Q j . . . Qm .ψ is true under α. Consider the case where Q j = ∀.
(The casewhere Q j = ∃ is analogous.) Then under both assignmentsα1, α2 ⊇ α to the
variables x1, . . . , x j−1, x j , formula Q j+1 . . . Qm .ψ is true. Let α′ ⊇ α be any one of
these two assignments. LetM ′ be any group of worlds that agrees with α′, and letw′ be
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the base world of M ′. Now, since Q j+1 . . . Qm .ψ is true under α′ and by the induction
hypothesis the claim holds for j + 1, we know that [Q j+1] . . . [Qm][ψ] is true in w′.

SinceQ j = ∀,weknow that [Q j ] = Bj . So ifwecan show that [Q j+1] . . . [Qm][ψ]
is true in all worlds that are R j -reachable fromw, then we know that [Q j ] . . . [Qm][ψ]
is true in w. By construction of Mm , all equivalence classes for R1, . . . , Rm are of
size two because this is the case in model (M, w0), and this property is kept intact by
the event models. So the worlds that are R j -reachable from w are w itself and some
world w∗ �= w. Furthermore, by construction of Mm , for any base world w of some
group M there is exactly one world w∗ �= w that is R j -reachable from w, and w∗ is
the base world of some group M∗ �= M . The assignment that M∗ represents differs
from the assignment that M represents only in the assignment to the variable xi .

Now assume without loss of generality that group M agrees with assign-
ment α1, then group M∗ agrees with α2. Therefore, by the induction hypothe-
sis, [Q j+1] . . . [Qm][ψ] is true in both w and w∗, and thus in all worlds that
are R j -reachable from w. Hence, [Q j ] . . . [Qm][ψ] is true in w.

Next, assume that Q j . . . Qm .ψ is not true under α. Consider the case where
Q j = ∀. (The casewhereQ j = ∃ is analogous.) Then there is someassignmentα′ ⊇ α

to the variables x1, . . . , x j , such that Q j+1 . . . Qm .ψ is not true under α′. Let M ′ be
the group of worlds that agrees with α′, and let w′ be the base world of M ′. Now, by
the induction hypothesis, we know that [Q j+1] . . . [Qm][ψ] is not true in w′. Further-
more, since Q j = ∀, we know that [Q j ] = Bj . So if we can show that there is some
world that is R j -reachable from w in which [Q j+1] . . . [Qm][ψ] is not true, then we
know that [Q j ] . . . [Qm][ψ] is not true inw. We know thatw′ is R j -reachable fromw

by construction of Mm and the fact that the assignments that M and M ′ represent
differ only by variable x j . Hence [Q j ] . . . [Qm][ψ] is not true in w.

Therefore, the claim holds for the case that i = j . Now, by induction, the claim
holds for the case that i = 1, and hence it follows that ϕ ∈ TQBF if and only
if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em, em) |
 [ϕ]. Since this reduction runs in polyno-
mial time, we conclude that DBU is PSPACE-hard. ��
Theorem 2 DBU is PSPACE-complete.

Proof In order to show PSPACE-membership for DBU, we can modify the
polynomial-space algorithm given by Aucher and Schwarzentruber (2013). Their
algorithm works for the problem of checking whether a given single-pointed epi-
stemic model makes a given DEL-formula true, where that formula may contain event
models that can be multi-pointed but have no postconditions. To make their algorithm
work for our formalism, it needs to be able to deal with multi-pointed epistemic mod-
els and event models with postconditions. In order to make their algorithm work for
multi-pointed epistemic models, we can call the algorithm several times: once for each
of the designated worlds. Furthermore, a modification is needed to deal with postcon-
ditions. Their algorithm checks the truth of a formula by inductively calling itself for
subformulas. In order to deal with postconditions, only the case where the formula
is a propositional variable needs to be modified. Instead of just checking whether the
variable is true in the initial model, one needs to take into account whether this variable
has been set to true or false by the postconditions. ��
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Table 1 Overview of the
different parameters for DBU

Param. Description

a Number of agents

c Maximum size of the preconditions

e Maximum number of events in the event models

f Size of the formula

o Modal depth of the formula, i.e., the order parameter

p Number of propositional variables in P

u Number of event models, i.e., the number of updates

4.4 Parameterized Complexity Results

Next, we provide a parameterized complexity analysis of Dynamic Belief Update
(DBU).

4.4.1 Parameters for DBU

We consider the following parameters for DBU. For each subset κ ⊆ {a, c, e,
f, o, p, u} we consider the parameterized variant κ-DBUof DBU, where the parame-
ter is the sum of the values for the elements of κ as specified in Table 1. For instance,
the problem {a, p}-DBU is parameterized by the number of agents plus the number of
propositional variables. Even though technically speaking there is only one parameter,
we will refer to each of the elements of κ as parameters. For every set κ of parameters
it holds that if κ-DBU is fixed-parameter tractable, then for every κ ′ ⊇ κ , κ ′-DBU is
also fixed-parameter tractable.

For the modal depth of a formula we count the maximum number of nested occur-
rences of modal operator B. Formally, we define the modal depth d(ϕ) of a formula ϕ

(in LB) recursively as follows.

d(ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ϕ = p ∈ P is a propositional variable;
max{d(ϕ1), d(ϕ2)} if ϕ = ϕ1 ∧ ϕ2;
d(ϕ1) if ϕ = ¬ϕ1;
1 + d(ϕ1) if ϕ = Baϕ1, for some agent a.

For the size of a formula we count the number of occurrences of propositional
variables and logical connectives. Formally, we define the size s(ϕ) of a formula ϕ

(in LB) recursively as follows.

s(ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ϕ = p ∈ P is a propositional variable;
1 + s(ϕ1) + s(ϕ2) if ϕ = ϕ1 ∧ ϕ2;
1 + s(ϕ1) if ϕ = ¬ϕ1;
1 + s(ϕ1) if ϕ = Baϕ1, for some agent a.
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4.4.2 Fixed-Parameter Intractability Results

In the following, we show fixed-parameter intractability for several parameterized
versions of DBU. We will use the parameterized complexity classes W[1] and
para-NP to show intractability; i.e., we will show hardness for these classes. Note
that we could additionally use the class para-PSPACE (Flum and Grohe 2003) to give
stronger intractability results. For instance, the proof of Theorem 1 already shows that
{p}-DBU is para-PSPACE hard since the reduction in this proof uses a constant
number of propositional variables. However, since in this paper we are mainly inter-
ested in the border between fixed-parameter tractability and intractability, we will not
focus on the subtle differences in the degree of intractability and restrict ourselves to
showing W[1]-hardness and para-NP-hardness. This is also the reason why we will
not show membership for any of the (parameterized) intractability classes; showing
hardness suffices to indicate intractability. For the following proofs we use the well-
known satisfiability problem Sat for propositional formulas, which is the canonical
NP-complete problem (Cook 1971; Levin 1973).We use the fact that hardness for Sat
holds even when restricted to propositional formulas that are in 3CNF (Cook 1971).

Proposition 1 {a, c, e, f, o}-DBU is para-NP-hard.

Proof To show para-NP-hardness, we specify a polynomial-time reduction from Sat
to DBU, where parameters a, c, e, f , and o have constant values. Let ϕ be a propo-
sitional formula with var(ϕ) = {x1, . . . , xm}. Without loss of generality we assume
that ϕ is a 3CNF formula with clauses c1 to cl . We introduce a propositional vari-
able zm+1 and construct a single-pointed epistemic model (M, w0) and an applicable
sequence of single-pointed event models (E1, e1), . . . , (Em+l , em+l), such that ϕ ∈
Sat if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em+l , em+l) |
 zm+1.

The general idea behind this reduction is that we use the individual worlds in
modelMm = (M, w0)⊗ (E1, e1)⊗· · ·⊗ (Em, em) to list all possible assignments to
var(ϕ). We do this by introducing a propositional variable zi for each variable xi in ϕ

and by constructingMm in such a way that the valuation Vm over these propositional
variables, in a given world w, represents an assignment α over var(ϕ), i.e. α(xi ) =
Vm(w, zi ). So each world in modelMm represents an assignment α over var(ϕ), and
each assignment α over var(ϕ) is represented by a world in model Mm .

We let (M, w0) be a single-agent, single-pointed epistemic model, consisting of a
single world, in which all propositional variables zi are set to false. Furthermore, we
construct a sequence of applicable single-pointed eventmodels (E1, e1), . . . , (Em, em).
For each 1 ≤ i ≤ m, we define (Ei , ei ) as shown in Fig. 9. Now, checking whether
formula ϕ is satisfiable can be done by checking whether ϕ is true in any of the worlds
inMm .

Furthermore, to keep the formula thatwe check in the final updatedmodel Mm+l =
(M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em+l , em+l) of constant size, we sequentially check the
truth of each clause ci and encode whether the clauses are true with an additional
variable zm+1. This is done by event models (Em+1, em+1) to (Em+l , em+l), which we
define for m + 1 and for each j , m + 2 ≤ j ≤ m + l as shown in Figures 10 and 11.
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ei

〈�, �〉

e′
i

〈�, xi〉
a

Fig. 9 The event model (Ei , ei ), used in the proof of Proposition 1

In the final updated modelMm+l , variable zm+1 is true in a world w if and only if
clauses c1 to cl are true in w, i.e., if it makes formula ϕ true. Hence, we can conclude
that ϕ ∈ Sat if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em+l , em+l) |
 zm+1. ��
Proposition 2 {c, e, f, o, p}-DBU is para-NP-hard.

Proof To show para-NP-hardness, we specify a polynomial-time reduction R from
Sat toDBU, where parameters c, e, f , o, and p have constant values. Let ϕ be a propo-
sitional formula with var(ϕ) = {x1, . . . , xm}. Without loss of generality we assume
that ϕ is a 3CNF formula with clauses c1 to cl . We introduce a propositional variable z
and agents b and c, andwe construct a single-pointed epistemicmodel (M, w0) and an
applicable sequence of single-pointed event models (E1, e1), . . . , (Em+l , em+l), such
that ϕ ∈ Sat if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em+l , em+l) |
 B̂b B̂cz.

The general idea behind this reduction is similar to the reduction in the proof
of Theorem 1. Again, we use groups of worlds to represent particular assign-
ments to the variables in ϕ. To construct these, we use a single-pointed epistemic
model (M, w0) with agents a, 1, . . . ,m and propositional variable y, such as defined
in Fig. 6. Furthermore, we use a sequence of applicable single-pointed event models
(E1, e1), . . . , (Em, em). For each 1 ≤ i ≤ m, we define (Ei , ei ) as shown in Fig. 12.

To keep the formula that we check in the final updated modelMm+l = (M, w0)⊗
(E1, e1)⊗· · ·⊗ (Em+l , em+l) of constant size, we sequentially check the truth of each
clause ci and encode whether the clauses are true with an additional variable z. This
is done by the single-pointed event models Em+1 to Em+l . For m + 1 and for m + 2 ≤
j ≤ m + l, we define event models (Em+1, em+1) and (E j , e j ) as shown in Figures 13
and 14. Event model e j (corresponding to clause j) marks each group of worlds that
represents an assignment that satisfies clauses 1 to j . It makes sure that each group of
worlds that represents a satisfying assignment for the given formula will have an Rc

relation from a world that is Rb-reachable from the designated world to a world where
propositional variable z is true.

In the final updatedmodel, therewill be such amarked group if and only if all clauses
are satisfiable (and thus if and only if the whole formula is satisfiable). Hence, we can
conclude thatϕ ∈Sat if and only if (M, w0)⊗(E1, e1)⊗· · ·⊗(Em+l , em+l) |
 B̂b B̂cz.

��
Proposition 3 {a, e, f, o, p}-DBU is para-NP-hard.

Proof To show para-NP-hardness, we specify a polynomial-time reduction R from
Sat to DBU, where parameters a, e, f , o, and p have constant values. Let ϕ be
a propositional formula with var(ϕ) = {x1, . . . , xm}. Without loss of generality we

123



280 I. van de Pol et al.

em+1

〈�, �〉

e′
m+1

〈c1, xm+1〉
a

Fig. 10 The event model (Em+1, em+1), used in the proof of Proposition 1

em+j

〈¬xm+1, �〉

e′
m+j

〈cj ∧ xm+1, xm+1〉
a

Fig. 11 The event model (Em+ j , em+ j ), used in the proof of Proposition 1

assume thatm is even.We introduce a propositional variable z∗ and agents b and c, and
we construct a single-pointed epistemic model (M, w0) and an applicable sequence
of single-pointed event models (E1, e1), . . . , (Em+1, em+1), such that ϕ ∈ Sat if and
only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em+1, em+1) |
 B̂b B̂cz∗.

The reduction is based on the same principle as the one used in the proof of The-
orem 1. Again, we use groups of worlds to represent particular assignments to the
variables in ϕ. To keep the number of agents constant, we use a different con-
struction to represent the variables in ϕ. We encode the variables by a string of
worlds that are connected by alternating relations Ra and Rb. We use the folowing
polynomial-time computable mappings. For 1 ≤ i ≤ m, we define [xi ] inductively as
follows: [x1] = B̂b,

[x j+1] =
{ [x j ]B̂b if [x j ] ends with B̂a,

[x j ]B̂a if [x j ] ends with B̂b.

Then [ϕ] is the adaptation of formula ϕ, where for 2 ≤ i ≤ m, every occurrence
of xi in ϕ is replaced by B̂a([xi ]y∧¬[xi−1]y), and every occurrence of x1 is replaced
by B̂a[x1]. Let M be a group of worlds, and let w be the unique world in M such
that there is no world accessible from w, in one step, where y is true. We say that M
represents an assignment α to variables x1, . . . , xm if (1) for each 2 ≤ i ≤ m, if α

sets xi to true, then B̂a([xi ]y ∧ ¬[xi−1]y) is true in w, and (2) if α sets x1 to true,
then B̂a[x1]y is true in w.

To construct this model with groups of worlds we introduce a single-pointed
epistemic model (M, w0) with agents a and b, and propositional variables y and z,
such as defined in Fig. 15. Furthermore, we use a sequence of applicable single-pointed
event models (E1, e1), . . . , (Em, em). We define (E1, e1) as shown in Fig. 16, and for
each 2 ≤ i ≤ m, we define (Ei , ei ) as shown in Fig. 17.

Furthermore, we keep the size of the formula constant by encoding the satisfi-
ability of the formula with a single propositional variable. We do this using event
model (Em+1, em+1) with agent c and propositional variable z∗, as defined in Fig. 18.
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ei

〈�, �〉

e′
i

〈Bi¬y ∨ (y ∧ Biy), �〉
a

Fig. 12 The event model (Ei , ei ), used in the proof of Proposition 2

em+1

〈�, �〉

e′
m+1

〈[c1], z〉
a

Fig. 13 The event model (Em+1, em+1), used in the proof of Proposition 2. Here, [c1] is the adaptation
of clause c1, where every occurrence of xi in c1 is replaced by B̂a B̂i y

ej

〈¬z, �〉

e′
j

〈[cj ] ∧ B̂bz, z〉
a

Fig. 14 The event model (E j , e j ), used in the proof of Proposition 2. Here, [c j ] is the adaptation of

clause c j , where every occurrence of xi in c j is replaced by B̂a B̂i y

Event model (Em+1, em+1) makes sure that each group of worlds that represents a
satisfying assignment for formula ϕ will bemarked; namely, each such groupwill have
an Rc relation from a world that is Rb-reachable from the designated world to a world
where propositional variable z∗ is true. Then in the final updated model Mm+1 =
(M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Em+1, em+1) there will be such a marked group if and
only if formula ϕ is satisfiable, i.e., ϕ ∈ Sat if and only ifMm+1 |
 B̂b B̂cz. ��

We consider the following parameterized problem, that we use in our proof of
Proposition 4. This problem is W[1]-complete (Fellows et al. 2009).

{k}-Multicolored Clique

Instance: A graph G and a vertex-coloring c : V (G) →
{1, 2, . . . , k} for G.

Parameter: k.
Question: DoesG have a clique of size k that includes vertices of all k

colors? That is, are there v1, . . . , vk ∈ V (G) such that for
all 1 ≤ i < j ≤ k : {vi , v j } ∈ E(G) and c(vi ) �= c(v j )?
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Fig. 15 The epistemic model (M, w0), used in the proofs of Proposition 3 and Proposition 6

e1

〈�, �〉

e′
1

〈¬[x1]y ∨ y ∨ z, �〉
a

Fig. 16 The event model (E1, e1), used in the proof of Proposition 3

ei

〈�, �〉

e′
i

〈¬[xi]y ∨ [xi−1]y ∨ y ∨ z, �〉
a

Fig. 17 The event model (Ei , ei ), used in the proof of Proposition 3

em+1

〈�, �〉

e′
m+1

〈[ϕ], z∗〉
c

Fig. 18 The event model (Em+1, em+1), used in the proof of Proposition 3

Proposition 4 {a, c, f, o, u}-DBU is W[1]-hard.

Proof To show W[1]-hardness, we specify an fpt-reduction R from
{k}-Multicolored Clique to {a, c, f, o, u}-DBU. Let (G, c) be an instance of
{k}-Multicolored Clique, whereG = (N , E). We construct a formula ϕ, a single-
pointed epistemicmodel (M, w0), and an applicable sequence of single-pointed event
models (E1, e1), . . . , (Ek+(k2)

, ek+(k2)
) such that (G, c) ∈ {k}-Multicolored Clique

if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Ek+(k2)
, ek+(k2)

) |
 ϕ.
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ei = ei,1 : 〈�, di1〉

ei,2 : 〈�, di2〉

ei,3 : 〈�, di3〉

ei,4 : 〈�, di4〉

. . .

ei,ui
: 〈�, diui

〉

ei,ui−1 : 〈�, diui−1〉

ei,ui−2 : 〈�, diui−2〉

a

a

a

aa

a

a

a
a

a

a

a

a

a

a

aa
a

a

a a

a

a
a

a

a
a

a

Fig. 19 The event model (Ei , ei ), used in the proof of Proposition 4

The general idea behind this reduction is that we use event mod-
els (E1, e1), . . . , (Ek, ek) to list all k-sized subsets of differently colored vertices of
graph G in model Mk = (M, w0) ⊗ · · · ⊗ (Ek, ek). Each world in Mk represents
a particular k-colored, k-sized subset of vertices in graph G. Then with event mod-
els (Ek+1, ek+1), . . . , (Ek+(k2)

, ek+(k2)
) we encode the existing edges between these

vertices in model Mk+(k2) = Mk ⊗ (Ek+1, ek+1) ⊗ · · · ⊗ (Ek+(k2)
, ek+(k2)

). Then we

can check in Mk+(k2) whether there is a world that represents a k-colored, k-sized
subset of vertices that is pairwise fully connected with edges. This is the case if and
only if G has a k-clique with k different colors.

For each vertex vi ∈ N we introduce propositional variable xi . We let (M, w0) be
a single-agent, single-pointed epistemic model, consisting of a single world, in which
all propositional variables are set to false. Furthermore, we construct a sequence of
applicable single-pointed eventmodels (E1, e1), . . . , (Ek, ek). Let X = {x1, . . . , x|N |},
we define D1 = {d11, . . . , d1u1} = {xi ∈ X; c(xi ) = 1}, . . . , Dk = {dk1, . . . , dkuk } =
{xi ∈ X; c(xi ) = k}. The set Dj contains a propositional variable for each vertex v

in N that has color j , and u j is the number of vertices in N that have color j . (Note that
these di j are names for propositional variables of the form xi .) For each 1 ≤ i ≤ m,
we define (Ei , ei ) as shown in Fig. 19.

We say that a worldw represents a k-colored, k-sized subset of vertices vi1 , . . . , vik
in graph G if propositional variables xi1 , . . . , xik are true inw and all other xi are false
in w. Note that all k-colored, k-sized subsets of vertices in graph G are represented by
a world in modelMk = (M, w0)⊗· · ·⊗ (Ek, ek), and every world inMk represents
a k-colored, k-sized subset of vertices in graph G.

Let t = (|N |
2

)
and let the set of all possible edges between the vertices in N be E ′ =

{{x ′
1, x

′′
1 }, . . . , {x ′

t , x
′′
t }}. (Note that x ′

� and x ′′
� are names for propositional variables of

the form xi .) We introduce a propositional variable z, and a propositional variable ri j
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ej = ej,0 : 〈�, �〉

ej,1 : 〈x′
1 ∧ x′′

1 ∧
¬ψ1, ψ1〉

ej,2 : 〈x′
2 ∧ x′′

2 ∧
¬ψ2, ψ2〉

ej,3 : 〈x′
3 ∧ x′′

3 ∧
¬ψ3, ψ3〉

. . .

ej,t : 〈x′
t ∧ x′′

t ∧
¬ψt, ψt〉

ej,t−1 : 〈x′
t−1 ∧ x′′

t−1 ∧
¬ψt−1, ψt−1〉

ej,t−2 : 〈x′
t−2 ∧ x′′

t−2 ∧
¬ψt−1, ψt−2〉

a

a

a

aa

a

a

a
a

a

a

a

a

a

a

aa
a

a

a a

a

a
a

a

a
a

a

Fig. 20 The event model (E j , e j ), used in the proof of Proposition 4

for each 1 ≤ i < j ≤ k. We will use propositional variable ri j to encode in some
world w whether in the subset of vertices that w represents there are a vertex v with
color i and a vertex w with color j that are connected by an edge {v,w} in G. For
each {x ′

l , x
′′
l } ∈ E ′ we define:

ψl =
{
ri j if {x ′

l , x
′′
l } ∈ E and c(x ′

l ) = i, c(x ′′
l ) = j, i < j,

z otherwise.

Now for each k1 ≤ j ≤ k + (k
2

)
, we define (E j , e j ) as shown in Fig. 20.

Note that all k-colored, k-sized subsets of vertices in graph G are represented by a

world inmodelMk+(k2) = (M, w0)⊗(E1, e1)⊗· · ·⊗(Ek+(k2)
, ek+(k2)

), and eachworld

inMk+(k2) represents a k-colored, k-sized subset of vertices in graph G. Furthermore,

some propositional variable ψl = ri j is true in world w in Mk+(k2) only if x ′
l and x ′′

l
are true in w and {x ′

l , x
′′
l } is an edge between vertices x ′

l and x ′′
l in G.

Now we let ϕ = ∧
1≤i< j≤k ri j . By construction, we have that ϕ is true in a worldw

only if all the k vertices in the k-colored, k-sized subset of vertices in graph G that are
represented by w are connected by an edge in graph G. And conversely, if there is a
worldw corresponding to a set of k vertices with different colors that are all connected
to each other by an edge in graph G, then in this world all propositional variables ri j
are true, and thus ϕ is true in w. Hence, (G, c) ∈ {k}-Multicolored Clique if and

only ifMk+(k2) |
 ϕ.
Since this reduction runs in polynomial time, parameters a, c, and o have a constant

value, and parameters f and u depend only on parameter k (namely f = 2
(k
2

) − 1

and u = k + (k
2

)
), we can conclude that {a, c, f, o, u}-DBU is W[1]-hard. ��
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ei,i : 〈(¬[xi] ∧ B̂a[xi]) ∨ y, �〉

ei,i+1 : 〈(¬[xi+1] ∧
B̂a[xi+1]) ∨ y, �〉

ei,i+2 : 〈(¬[xi+2] ∧
B̂a[xi+2]) ∨ y, �〉

. . .

ei,m : 〈(¬[xm] ∧ B̂a[xm]) ∨ y, �〉

ei,i−1 : 〈(¬[xi−1] ∧
B̂a[xi−1]) ∨ y, �〉

. . .

ei,1 : 〈(¬[x1] ∧
B̂a[x1]) ∨ y, �〉

b

b

b

bb

b

b

b
b

b

b

b

b

b

b
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b
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Fig. 21 The event model (Ei , ei,i ), used in the proof of Proposition 5

Proposition 5 {c, o, p, u}-DBU isW[1]-hard.

Proof To showW[1]-hardness, we specify an fpt-reduction R from {k}-WSat[2CNF]
to {c, o, p, u}-DBU. Let ϕ be a propositional formula with var(ϕ) = {x1, . . . , xm}.
Without loss of generality, assume that m ≥ 2. We introduce agent b and construct
a single-pointed epistemic model (M, w0), an applicable sequence of single-pointed
event models (E1, e1), . . . , (Ek, ek), and a formula [ϕ] ∈ LB , such that ϕ ∈ {k} −
WSat[2CNF] if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Ek, ek) |
 B̂b[ϕ′].

We sketch the general idea behind the reduction. Let ϕ be a propositional formula
with var(ϕ) = {x1, . . . , xm}. Then let ϕ′ be the formula obtained from ϕ by replacing
each occurrence of xi with ¬xi . We note that ϕ is satisfiable by some assignment α

that sets k variables to true if and only if ϕ′ is satisfiable by some assignment α′ that
sets k variables to false, i.e, that sets m − k variables to true. We use the reduction to
list all possible assignments to var(ϕ′) = var(ϕ) that set m − k variables to true. We
represent each possible assignment to var(ϕ′) that sets m − k variables to true by a
group of worlds, like in the proof of Theorem 1.

Just as in the proof of Theorem 1, we construct a single-pointed epistemic
model (M, w0) with agents a, 1, . . . ,m and propositional variable y, as shown in
Fig. 6. Then for each 1 ≤ i ≤ k, we define (Ei , ei,i ) as shown in Fig. 21. Note that in
each event model the designated event is ei,i . This is to ensure that the event models
are applicable. Now model Mk = (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Ek, ek) consists of
groups of worlds that each represent some assignment α′ to var(ϕ′) = var(ϕ) that
sets m − k variables to true. Each assignment α to var(ϕ′) = var(ϕ) that sets m − k
variables to true is represented by a group of worlds in model Mk .

For 1 ≤ i ≤ m, let [xi ] = B̂i y. Nowwe let [ϕ] be the adaptation of formula ϕ where
every occurrence of xi in ϕ is replaced by B̂a[xi ]. By construction, formula B̂b[ϕ′] is
true in modelMk if and only if there is a group of worlds inMk that represents some
assignment α′ that sets m − k variables to true and that satisfies formula ϕ′, i.e., if and
only if there is some assignment α that satisfies formula ϕ and that sets k variables
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ei,i : 〈(¬[xi]y ∨ [xi−1]y ∨ y ∨ z) ∧
(B̂a[xi]y ∧ ¬B̂a[xi−1]y), �〉

ei,i+1 :
〈(¬[xi+1]y ∨ [xi]y ∨ y ∨ z) ∧
(B̂a[xi+1]y ∧ ¬B̂a[xi]y), �〉

ei,i+2 :
〈(¬[xi+2]y ∨ [xi+1]y ∨ y ∨ z) ∧
(B̂a[xi+2]y ∧ ¬B̂a[xi+1]y), �〉

. . .

ei,m : 〈(¬[xm]y ∨ [xm−1]y ∨ y ∨ z)∧
(B̂a[xm]y∧¬B̂a[xm−1]y), �〉

ei,i−1 :
〈(¬[xi−1]y ∨ [xi−2]y ∨ y ∨ z) ∧
(B̂a[xi−1]y ∧ ¬B̂a[xi−2]y), �〉

. . .

ei,1 : 〈(¬[x1]y∨y∨z)∧
B̂a[x1]y, �〉

b

b

b

bb

b

b

b
b

b

b

b

b

b

b
b

b
b

b
b
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b

b
b
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Fig. 22 The event model (Ei , ei,i ), used in the proof of Proposition 6

to true. Hence, (ϕ, k) ∈ {k}-WSat[2CNF] if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗
(Ek, ek) |
 B̂b[ϕ′].

Since this reduction runs in polynomial time, parameters c, o, and p have constant
values, and parameter u depends only on parameter k (namely u = k), we can conclude
that {c, o, p, u}-DBU is W[1]-hard. ��

Proposition 6 {a, f, o, p, u}-DBU isW[1]-hard.

Proof To showW[1]-hardness, we specify an fpt-reduction R from {k}-WSat[2CNF]
to {a, f, o, p, u}-DBU. Let ϕ be a propositional formula with var(ϕ) = {x1, . . . , xm}.
Without loss of generality, assume that m ≥ 2. We introduce propositional vari-
able z∗ and construct a single-pointed epistemic model (M, w0) and an applicable
sequence of single-pointed event models (E1, e1), . . . , (Ek+1, ek+1), such that ϕ ∈
{k} − WSat[2CNF] if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Ek+1, ek+1) |
 z∗.

Wemodify the reduction in the proof of Proposition 5 to keep the values of parame-
ters a and f constant. To keep the number of agents constant, we use the same strategy
as in the reduction in the proof of Proposition 3, where variables xi , . . . , xm are rep-
resented by strings of worlds with alternating relations Rb and Ra . And just like in
the proof of Proposition 3, the size of the formula is kept constant by encoding the
satisfiability of the formula with a single propositional variable. Then each group of
worlds that represents a satisfying assignment for the given formula will have an Rc

relation from a world that is Rb-reachable from the designated world to a world where
propositional variable z∗ is true.

We introduce a single-pointed epistemic model (M, w0) with agents a and b, and
propositional variables y and z, such as defined in Fig. 15. Let [xi ] be defined as in
the proof of Proposition 3. Then for each 1 ≤ i ≤ k, we define (Ei , ei,i ) as shown in
Fig. 22. Again, to ensure that the event models are applicable, in each event model the
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ek+1

〈�, �〉

e′
k+1

〈[ϕ′], z∗〉
c

Fig. 23 The event model (Ek+1, ek+1), used in the proof of Proposition 6

designated event is ei,i . NowmodelMk = (M, w0)⊗(E1, e1)⊗· · ·⊗(Ek, ek) consists
of groups of worlds that each represent some assignment α to var(ϕ) that sets m − k
variables to true. And conversely, each assignment α to var(ϕ) that setsm−k variables
to true is represented by a group of worlds in model Mk .

Let ϕ′ be the formula obtained from ϕ by replacing each occurrence of xi with¬xi ,
and let [ϕ] be defined as in the proof of Proposition 3. We introduce agent c and
define event model (Ek+1, ek+1) as shown in Fig. 23. Event model (Ek+1, ek+1)makes
sure that each group of worlds that represents a satisfying assignment for formula ϕ′
will be marked by propositional variable z∗. Thereby the size of formula f is kept
constant. Now, in a similar way as in the proof of Proposition 5, we have that (ϕ, k) ∈
{k}-WSat[2CNF] if and only if (M, w0) ⊗ (E1, e1) ⊗ · · · ⊗ (Ek, ek) |
 z∗.

Since this reduction runs in polynomial time, parametersa, f ,o, and p have constant
values, and parameter u depends only on parameter k (namely u = k + 1), we can
conclude that {a, f, o, p, u}-DBU is W[1]-hard. ��

4.4.3 Fixed-Parameter Tractability Results

Next, we turn to a case that is fixed-parameter tractable.

Theorem 3 {e, u}-DBU is fixed-parameter tractable.

Proof We present the following fpt-algorithm that runs in time eu · p(|x |), for some
polynomial p, where e is the maximum number of events in the event models and u
is the number of event models (i.e., the number of updates).

As a subroutine, the algorithm checks whether a given basic epistemic formula ϕ

holds in a given pointed epistemic model (M,Wd), i.e., whether M,Wd |
 ϕ. This
can be done in polynomial time in the size of M plus the size of ϕ. First, we note
that for every modal logic formula ϕ, we can construct in polynomial time a first-
order logic formula ψ with two variables, such that checking whether ϕ is true in
a given pointed epistemic model (M,Wd) can be done by checking the truth of ψ

in M. We can construct this ψ by means of the standard translation (van Benthem
1977, Definition 2.1), whose definition can straightforwardly be adapted to the case of
multiple agents. This adapted definition can also be used for the slightly more general
case of multi-pointed models.

Furthermore, given a model and a formula in first-order logic with a constant num-
ber of variables, checking whether the formula is true in the model can be done in
polynomial time in the size of the model plus the size of the formula (Vardi 1995,
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Proposition 3.1). Therefore, we can decide the truth of a given modal logic formula
in a given model in polynomial time.

Let x = (P,A, (M0, w0), (E1, e1), . . . , (Eu, eu), ϕ) be an instance of DBU. First
the algorithm computes the final updated model Mm = (M0, w0) ⊗ (E1, e1) ⊗ · · · ⊗
(Eu, eu) by sequentially performing the updates. Let M0 = (M0, w0), then for each
i ,Mi is defined asMi−1 ⊗ (Ei , ei ). The size (i.e., the number of events) of eachMi

is upper bounded by |M0| · eu , so for each update checking the preconditions can be
done in time polynomial in eu · |x | by using the subroutine we described above. This
means that computing Mu can be done in fpt-time.

Then the algorithm decides whether ϕ is true in Mu . This can be done in time
polynomial in the size of Mu plus the size of ϕ. We know that |Mu | + |ϕ| is upper
bounded by |M0| ·eu +|ϕ| and thus upper bounded by eu · p(|x |) for some polynomial
p. Therefore, deciding whether ϕ is true in Mu is fixed-parameter tractable. Hence,
the algorithm decides whether x ∈ DBU and runs in fpt-time. ��

4.5 Overview of the Results

We showed that DBU is PSPACE-complete, we presented several parameterized
intractability results (W[1]-hardness and para-NP-hardness) and we presented one
fixed-parameter tractability result, namely for {e, u}-DBU. In Fig. 24, we present a
graphical overviewof our results and the consequent border between fp-tractability and
fp-intractability for the problem DBU. We leave {a, c, p}-DBU and {c, f, p, u}-DBU
as open problems for future research.

5 Discussion

Theory of mind reasoning is notorious in the cognitive science literature for its pre-
sumed computational intractability. A possible reason could be that it may involve
higher-order thinking (e.g., ‘you believe that I believe that you believe’). To investi-
gate this we formalized theory of mind reasoning as updating of beliefs about beliefs
using dynamic epistemic logic (DEL). We presented the Dynamic Belief Update
(DBU) model (which is a special case of DEL model checking), and we proved that
it is PSPACE-complete. This means that (without additional constraints), there is no
algorithm that computes DBU in a reasonable amount of time. In other words, without
restrictions on its input domain, the model is computationally too hard to serve as a
plausible explanation for human cognition. To investigate whether the ‘order param-
eter’ is a source of intractability, i.e., whether restricting the order of reasoning could
render DBU tractable, we analyzed the parameterized complexity of DBU.

Possibly counterintuitively from a cognitive science perspective, we did not find
any fixed-parameter tractability results for the order parameter, which we operational-
ized as the modal depth of formula ϕ in DBU. Already for a formula with modal
depth one (even with just a single agent) DBU is NP-hard. It follows as a corollary
from Proposition 1 that {o}-DBU (and {a}-DBU, and {a, o}-DBU) are para-NP-hard.
For the parameters that we considered, we did not find any set of parameters for
which adding order parameter o makes DBU fixed-parameter tractable. Note that
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∅

{p} {u}

{e}

{e, u}
{a, c, f, o, u}{a, c, e, f, o}

{a, p} {c, p}
{f, p, u}{c, p, u}

{a, e, f, o, p} {c, e, f, o, p} {a, f, o, p, u}{c, o, p, u}

{a, c, p} {c, f, p, u}

{a, c, e, f, o, p, u}

fp-tractable
fp-intractable

Fig. 24 Overview of the parameterized complexity results for the different parameterizations of DBU,
and the line between fp-tractability and fp-intractability. For the readability of this illustration, this graph
describes the case where {a, c, p}-DBU and {c, f, p, u}-DBU are fp-tractable, which we leave as open
problems

we left {a, c, p}-DBU and {c, f, p, u}-DBU as open problems. If {a, c, p}-DBU
or {c, f, p, u}-DBU turn out to be fixed-parameter intractable, then there could be
cases for which adding order parameter o makes a difference; e.g., {a, c, o, p}-DBU
or {c, f, o, p, u}-DBU could then be fixed-parameter tractable. In these cases, only
in combination with at least three or four other parameters could restricting the order
parameter lead to fixed-parameter tractability. Summing up, we found no evidence to
support the claim that higher-order thinking is a source of intractability for theory of
mind. It is important not to confuse computational intractability with cognitive diffi-
culty here. Higher-order thinking could still be a source of difficulty for performing
theory of mind for other reasons than computational complexity (e.g., due to limited
working-memory).

It is interesting to note that in our PSPACE-hardness proof we used more than one
agent, while for DBU restricted to a single agent we were only able to show NP-
hardness. It is known that for games the complexity of the single-agent case often
lays low in the polynomial hierarchy (e.g., NP-complete), while the two-agent case
usually brings the complexity up to PSPACE-completeness (see, e.g., Burke et al.
2015; Reyzin 2006). We find this remarkable and we expect the same to hold for
DBU. Determining the exact upper bound on the complexity of DBU restricted to
a single agent, we leave for future research. Just like the modal depth, the number
of agents seems to be related to higher-order theory of mind. Restricting a problem
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to a single agent, basically means eliminating the possibility of higher-order theory
of mind. Allowing for two or more agents, on the other hand, means that there can
be agents reasoning about each other; i.e., it allows for higher-order theory of mind.
Like for many games, restricting DBU to a single agent does not render it tractable,
as already for a single agent it is NP-hard. It is remarkable that even though it does
not make the difference between tractability and intractability, the difference between
one or more agents might still make the difference between a lower or higher location
in the complexity landscape.

While we did not find any tractability results for the order parameter, we did find
a fixed-parameter tractability result for the combination of two other parameters that
we considered—namely, for parameters e and u, respectively the maximum number
of events in any of the given event models and the number of event models, (i.e., the
number of updates). When restricting only the number of events in the event models
or only the number of event models, this does not render DBU tractable, but restricting
both does. This shows that e and u together form a source of intractability. This result is
perhaps not surprising since these twoparameters determine the size of the search space
for DBU. This is because the size of the final updated model (M0,Wd) ⊗ (E1, E1) ⊗
· · ·⊗ (Eu, Eu) (i.e., the search space for DBU) can be as large as and is upper bounded
by the size of the initial model (M0, w0) times eu . This fixed-parameter tractability
result is consistentwith the fact that a sequence of eventmodels (E1, E1), . . . , (Eu, Eu)

can be combined into one event model (E ′, E ′) that has the same effect—at the cost
of increasing the number of events to eu (van Ditmarsch and Kooi 2006). This means
that combining the individual event models into one big event model does not buy
tractability, since the size of the updated model (M0,Wd) ⊗ (E ′, E ′) will still be as
large as the size of the initial model (M0, w0) times eu .

The question arises how we can interpret parameters e and u in terms of their
cognitive counterparts. To what aspect of theory of mind do they correspond, and
moreover, can we assume that they have small values in (many) real-life situations? In
general, one could say that event models represent steps of change in time, and that the
number of events in these event models represent the number of possible things (both
factual and observational) that can happen. For instance, in the Sally-Anne example
that we modeled the event model contains two events: one for the possibility that the
marble stayed in the basket and one for the possibility that the marble was moved into
the box while Sally is not aware of this. This event model stands for the change step
in which ‘Sally leaves the room and Anne moves the marble into the box.’ It seems
like a reasonable assumption that when considering situations of change, we do not
consider many different steps of change at the same time, or that we consider many
different things that could possibly happen in that situation. Of course, verifying this
requires empirical research.

For the understanding of the complexity of theory of mind it is interesting that
parameters e and u are unrelated to the order parameter. This seems to indicate that
what makes theory of mind intractable is not necessarily higher-order thinking about
others’ mental states but, more in general, reasoning about change. So our results
indicate that, contrarily to what is often believed, the intractability of theory of mind
is not due to involvement of a specialized form of reasoning for the social domain.
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Besides the implications for the understanding of the complexity of theory of mind,
our complexity results might also be of independent interest for researchers working
on dynamic epistemic logic. Previous results have shown that DEL model checking
is PSPACE-complete for the case restricted to single-pointed KD45 models (Aucher
and Schwarzentruber 2013; Bolander et al. 2015; van Eijck and Schwarzentruber
2014). We showed that DEL model checking is PSPACE-complete even for the more
restricted case of single-pointed S5 models. We also analyzed the problem from a
parameterized complexity point of view. We proved that for most combinations of
the considered parameters the problem is fixed-parameter intractable (by means of
hardness results for the classes W[1] and para-NP), and for one case we proved fixed-
parameter tractability (see Fig. 24 for an overview). These parameterized complexity
results can be informative for researchers interested in implementations of DEL in
computer science andAI.Understandingwhich parameters are sources of intractability
in DEL-based models of epistemic reasoning informs such applied research efforts by
specifying under which conditions tractable belief updating is possible and when it is
not.

6 Conclusion

We analyzed the computational complexity of theory ofmind, formalized as the updat-
ing of beliefs about beliefs in dynamic epistemic logic (DEL). A key finding is that our
results suggest that the intractability of theory of mind is not due to the computational
demands imposed by ‘higher-order reasoning,’ as often assumed in cognitive science.
Instead, our results suggest that intractability of theory of mind may be better sought
in the computational demands posed by a more general form of reasoning about steps
of change in time.

In sum, our work showcases how logic and complexity theory can inform debates
in cognitive science. We adopted this methodological approach and conceptual frame-
work to help bridge the areas of logic and cognitive science. We hope that it may
serve as a guide for more future research at the interface of logic, complexity, and
cognition. Future research may include investigating alternative ways to parameterize
higher-order thinking in DEL. It would be interesting to see whether there are other
ways to formalize and possibly bound the order of reasoning in DEL models. For
a broader applicability of using DEL for modeling theory of mind, future research
may furthermore include extending the model to a wider palette of mental states, like
emotional and motivational states.

Acknowledgements We thank the reviewers for their comments. We thank Thomas Bolander, Malvin
Gattinger,NinaGierasimczuk,Ronald deHaan,MartinHolm Jensen, and themembers of theComputational
Cognitive Science group at theDondersCentre forCognition for interesting discussions and useful feedback.
We thank Ronald de Haan for graphical and technical support.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/


292 I. van de Pol et al.

References

Apperly, I. (2011).Mindreaders: The cognitive basis of “Theory of Mind”. Hove: Psychology Press.
Arkoudas, K., & Bringsjord, S. (2009). Propositional attitudes and causation. International Journal of

Software and Informatics, 3(1), 47–65.
Arora, S., & Barak, B. (2009). Computational complexity: A modern approach. Cambridge: Cambridge

University Press.
Arslan, B., Taatgen, N.,& Verbrugge, R. (2013). Modeling developmental transitions in reasoning about

false beliefs of others. In Proceedings of the 12th international conference on cognitive modeling (pp.
77–82), Ottawa: Carleton University.

Aucher, G. (2010). An internal version of epistemic logic. Studia Logica, 94(1), 1–22.
Aucher, G.,& Schwarzentruber, F. (2013). On the complexity of dynamic epistemic logic. In Proceedings

of the fourteenth conference on theoretical aspects of rationality and knowledge (TARK).
Baker, C. L. (2012). Bayesian theory of mind: Modeling human reasoning about beliefs, desires, goals, and

social relations. Ph.D. thesis, Massachusetts Institute of Technology.
Baltag, A., Moss, LS.,& Solecki, S. (1998). The logic of public announcements, common knowledge, and

private suspicions. In Proceedings of the 7th conference on theoretical aspects of rationality and
knowledge (TARK).

Baron-Cohen, S., Leslie, A.M., & Frith, U. (1985). Does the autistic child have a theory ofmind?Cognition,
21(1), 37–46.

Barton, E. G., Berwick, R., & Ristad, E. S. (1987). Computational Complexity and Natural Language. The
MIT Press: Bradford Books.

Blokpoel,M.,Kwisthout, J., van derWeide, T. P.,Wareham,T.,&vanRooij, I. (2013).A computational-level
explanation of the speed of goal inference. Journal of Mathematical Psychology, 57(3), 117–133.

Bolander, T. (2014). Seeing is believing: Formalising false-belief tasks in dynamic epistemic logic. In
European conference on social intelligence (ECSI 2014) (pp. 87–107).

Bolander, T., & Andersen, M. B. (2011). Epistemic planning for single and multi-agent systems. Journal
of Applied Non-Classical Logics, 21(1), 9–34.

Bolander, T., Jensen, M. H.,& Schwarzentruber, F. (2015). Complexity results in epistemic planning.
In Proceedings of the 24th international joint conference on artificial intelligence (IJCAI), AAAI
Press/IJCAI.

Braüner, T. (2014). Hybrid-logical reasoning in the smarties and Sally–Anne tasks. Journal of Logic,
Language and Information, 23(4), 415–439. https://doi.org/10.1007/s10849-014-9206-z.

Burke, K., Demaine, E. D., Gregg, H., Hearn, R. A., Hesterberg, A., Hoffmann, M., Ito, H., Kostitsyna, I.,
Leonard, J., & Löffler, M., et al. (2015). Single-player and two-player buttons and scissors games. In
Japanese conference on discrete and computational geometry and graphs (JCDCGG 2015), Lecture
Notes in Computer Science (Vol. 9943, pp. 60–72). Belrin: Springer.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning. Artificial Intelli-
gence, 69(1–2), 165–204.

Carruthers, P. (2006). The architecture of the mind. Oxford: Oxford University Press.
Cherniak, C. (1990).Minimal rationality. Cambridge: MIT Press.
Cook, S. A. (1971). The complexity of theorem proving procedures. In Proceedings of the 3rd annual ACM

symposium on the theory of computing (STOC 1971) (pp. 151–158), New York.
Cummins, R. (2000). “How does it work?” versus “What are the laws?”: Two conceptions of psycholog-

ical explanation. In F. Keil & Robert A. Wilson (Eds.), Explanation and cognition (pp. 117–145).
Cambridge, MA: MIT Press.

Dégremont, C., Kurzen, L., & Szymanik, J. (2014). Exploring the tractability border in epistemic tasks.
Synthese, 191(3), 371–408.

Deineko, V. G., Hoffmann, M., Okamoto, Y., & Woeginger, G. J. (2006). The traveling salesman problem
with few inner points. Operations Research Letters, 34(1), 106–110. https://doi.org/10.1016/j.orl.
2005.01.002.

Downey, R. G., & Fellows, M. R. (1999). Parameterized complexity. Monographs in computer science.
New York: Springer.

Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Texts in computer
science. Berlin: Springer.

Fellows, M. R., Hermelin, D., Rosamond, F. A., & Vialette, S. (2009). On the parameterized complexity of
multiple-interval graph problems. Theoretical Computer Science, 410(1), 53–61.

123

https://doi.org/10.1007/s10849-014-9206-z
https://doi.org/10.1016/j.orl.2005.01.002
https://doi.org/10.1016/j.orl.2005.01.002


Parameterized Complexity of Theory of Mind Reasoning 293

Flobbe, L., Verbrugge, R., Hendriks, P., & Krämer, I. (2008). Children’s application of theory of mind in
reasoning and language. Journal of Logic, Language and Information, 17(4), 417–442.

Flum, J., &Grohe,M. (2003). Describing parameterized complexity classes. Information and Computation,
187(2), 291–319.

Flum, J.,& Grohe, M. (2006). Parameterized complexity theory, Texts in theoretical computer science. In
An EATCS Series (vol. XIV). Berlin: Springer.

Fortnow, L. (2009). The status of the P versus NP problem. Communications of the ACM, 52(9), 78–86.
Frith, U. (2001). Mind blindness and the brain in autism. Neuron, 32(6), 969–979.
Frixione, M. (2001). Tractable competence. Minds and Machines, 11(3), 379–397.
Garey, M. R., & Johnson, D. R. (1979). Computers and Intractability. San Francisco: WH Freeman.
Gasarch, W. I. (2012). Guest column: the second P =? NP poll. SIGACT News, 43(2), 53–77.
Gierasimczuk, N.,& Szymanik, J. (2011). A note on a generalization of the muddy children puzzle. In

Proceedings of the 13th conference on theoretical aspects of rationality and knowledge (TARK).
Haselager, W. F. G. (1997). Cognitive science and folk psychology: The right frame of mind. Thousand

Oaks: Sage Publications.
Hedden, T., & Zhang, J. (2002). What do you think I think you think?: Strategic reasoning in matrix games.

Cognition, 85(1), 1–36.
Isaac, A.M., Szymanik, J., &Verbrugge, R. (2014). Logic and complexity in cognitive science. In A. Baltag

& S. Smets (Eds.), Johan van Benthem on logic and information dynamics, outstanding contributions
to logic (Vol. 5, pp. 787–824). Berlin: Springer.

Karp,R.M. (1972).Reducibility amongcombinatorial problems. In:Miller,R.E., Thatcher, J.W.,Bohlinger,
J. D. (Eds.), Complexity of computer computations: Proceedings of a symposium on the complexity
of computer computations (pp. 85–103). Springer US, Boston, MA. https://doi.org/10.1007/978-1-
4684-2001-2_9.

Kinderman, P., Dunbar, R., & Bentall, R. P. (1998). Theory-of-mind deficits and causal attributions. British
Journal of Psychology, 89(2), 191–204.

Levesque, H. J. (1988). Logic and the complexity of reasoning. Journal of Philosophical Logic, 17(4),
355–389.

Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3),
265–266.

Levinson, S. C. (2006). On the human ‘interaction engine’. In N. J. Enfield & S. C. Levinson (Eds.), Roots
of human sociality: Culture, cognition and interaction (pp. 39–69). Oxford: Berg.

Lyons, M., Caldwell, T., & Shultz, S. (2010). Mind-reading and manipulation—Is machiavellianism related
to theory of mind? Journal of Evolutionary Psychology, 8(3), 261–274.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of
visual information. San Francisco: WH Freeman.

Miller, S.A. (2009). Children’s understanding of second-ordermental states.Psychological Bulletin, 135(5),
749–773.

Newell, A., & Simon, H. A. (1988). GPS, a program that simulates human thought. In A. M. Collins & E. E.
Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence
(pp. 453–460). San Mateo, CA: Kaufmann.

Nichols, S., & Stich, S. P. (2003). Mindreading: An integrated account of pretence, self-awareness, and
understanding other minds. Oxford: Oxford University Press.

Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford lecture series in mathematics and
its applications. Oxford: Oxford University Press.

Oaksford, M., & Chater, N. (1998). Rationality in an uncertain world: Essays on the cognitive science of
human reasoning. Hove: Psychology Press.

O’Grady, C., Kliesch, C., Smith, K., & Scott-Phillips, T. C. (2015). The ease and extent of recursive
mindreading, across implicit and explicit tasks. Evolution and Human Behavior (in press).

Otworowska, M., Blokpoel, M., Sweers, M., Wareham, T., & van Rooij, I. (2017). Demons of ecological
rationality. Cognitive Science. https://doi.org/10.1111/cogs.12530.

Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain
Sciences, 1(04), 515–526.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1–2), 81–132.
Reyzin, L. (2006). 2-Player Tetris is PSPACE-hard. In Proceedings of the 16th fall workshop on computa-

tional and combinatorial geometry (FWCG 2006).
Ristad, E. S. (1993). The language complexity game. Cambridge, MA: MIT Press.

123

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1111/cogs.12530


294 I. van de Pol et al.

Slors, M. (2012). The model-model of the theory-theory. Inquiry, 55(5), 521–542.
Sperber, D., & Wilson, D. (1996). Relevance: Communication and Cognition. China: Wiley.
Stenning, K., & van Lambalgen, M. (2008). Human reasoning and cognitive science. Cambridge: MIT

Press.
Stiller, J., & Dunbar, R. I. (2007). Perspective-taking and memory capacity predict social network size.

Social Networks, 29(1), 93–104.
Stockmeyer, L. J., & Meyer, A. R. (1973) Word problems requiring exponential time (preliminary report).

In: Proceedings of the 5th annual ACM symposium on the theory of computing (STOC 1973), ACM
(pp 1–9).

Szymanik, J. (2016). Quantifiers and cognition. Logical and computational perspectives. Studies in lin-
guistics and philosophy. Berlin: Springer.

Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13(3),
423–469.

van Benthem, J. (1977).Modal correspondence theory. Ph.D. thesis, Universiteit van Amsterdam.
vanBenthem, J. (2011).Logical dynamics of informationand interaction. Cambridge:CambridgeUniversity

Press.
van Ditmarsch, H.,& Kooi, B. (2006). Semantic results for ontic and epistemic change. In Proceedings

of the 7th conference on logic and the foundations of game and decision theory (LOFT 2006) (pp.
87–117). Amsterdam University Press.

van Ditmarsch, H., van der Hoek, W., & Kooi, B. P. (2008). Dynamic epistemic logic. Berlin: Springer.
van Eijck, J., & Schwarzentruber, F. (2014). Epistemic probability logic simplified. In Advances in modal

logic (pp. 158–177).
van de Pol, I. (2015). How difficult is it to think that you think that i think that ...? A DEL-based

Computational-level Model of Theory of Mind and its Complexity. Master’s thesis, University of
Amsterdam, the Netherlands.

van de Pol, I., Szymanik, J.,& van Rooij, I. (2015). Parameterized complexity results for a model of theory
of mind based on dynamic epistemic logic. In: RamanujamR (Ed.) Proceedings of the 15th conference
on theoretical aspects of rationality and knowledge (TARK) (pp. 239–248).

van Rooij, I. (2003). Tractable cognition: Complexity theory in cognitive psychology. Ph.D. thesis, Univer-
sity of Victoria.

van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6), 939–984.
van Rooij, I. (2015). How the curse of intractability can be cognitive science’s blessing. In Proceedings of

the 37th annual conference of the cognitive science society (pp. 2839–2840).
van Rooij, I., Kwisthout, J., Blokpoel, M., Szymanik, J., Wareham, T., & Toni, I. (2011). Intentional

communication: Computationally easy or difficult? Frontiers in Human Neuroscience, 5(52), 1–18.
van Rooij, I., Stege, U., & Kadlec, H. (2005). Sources of complexity in subset choice. Journal of Mathe-

matical Psychology, 49(2), 160–187.
van Rooij, I., & Wareham, T. (2008). Parameterized complexity in cognitive modeling: Foundations, appli-

cations and opportunities. The Computer Journal, 51(3), 385–404.
van Rooij, I., &Wareham, T. (2012). Intractability and approximation of optimization theories of cognition.

Journal of Mathematical Psychology, 56(4), 232–247.
Vardi, MY. (1995). On the complexity of bounded-variable queries (extended abstract). In Proceedings of

the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (PODS
1995) (pp. 266–276). ACM, New York, NY, USA.

Verbrugge, R. (2009). Logic and social cognition: the facts matter, and so do computational models. Journal
of Philosophical Logic, 38(6), 649–680.

Wareham, H. T. (1999). Systematic parameterized complexity analysis in computational phonology. Ph.D.
thesis, Department of Computer Science, University of Victoria, British Columbia, Canada.

Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: The truth
about false belief. Child Development, 72(3), 655–684.

Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong
beliefs in young children’s understanding of deception. Cognition, 13(1), 103–128.

Zawidzki, T. W. (2013).Mindshaping: A New framework for understanding human social cognition. Cam-
bridge: MIT Press.

123


	Parameterized Complexity of Theory of Mind Reasoning in Dynamic Epistemic Logic
	Abstract
	1 Introduction
	2 Conceptual and Methodological Background
	2.1 Modeling at the Computational Level
	2.2 The Tractable Cognition Thesis
	2.3 The P-Cognition Thesis
	2.4 The FPT-Cognition Thesis

	3 Formalizing Theory of Mind Using Dynamic Epistemic Logic
	3.1 Preliminaries: Dynamic Epistemic Logic
	3.2 Dynamic Belief Update

	4 Computational Complexity Results
	4.1 Preliminaries: Classical Complexity Theory
	4.2 Preliminaries: Parameterized Complexity Theory
	4.3 PSPACE-Completeness
	4.4 Parameterized Complexity Results
	4.4.1 Parameters for DBU
	4.4.2 Fixed-Parameter Intractability Results
	4.4.3 Fixed-Parameter Tractability Results

	4.5 Overview of the Results

	5 Discussion
	6 Conclusion
	Acknowledgements
	References




